
A Fast Smoothing Procedure for Large-Scale Stochastic Programming

Martin Biel, Vien V. Mai, Mikael Johansson

Abstract— We develop a fast smoothing procedure for solving
linear two-stage stochastic programs, which outperforms the
well-known L-shaped algorithm on large-scale benchmarks. We
derive problem-dependent bounds for the effect of smoothing
and characterize the convergence rate of the proposed algo-
rithm. The theory suggests that the smoothing scheme can be
sped up by sacrificing accuracy in the final solution. To obtain
an efficient and effective method, we suggest a hybrid solution
that combines the speed of the smoothing scheme with the
accuracy of the L-shaped algorithm. We benchmark a parallel
implementation of the smoothing scheme against an efficient
parallelized L-shaped algorithm on three large-scale stochastic
programs, in a distributed environment with 32 worker cores.
The smoothing scheme reduces the solution time by up to an
order of magnitude compared to L-shaped.

I. INTRODUCTION

Stochastic programming [1] is a well-established approach
to decision-making under uncertainty with countless ap-
plications in the control and decision sciences, including
power systems [2], process control [3] and air traffic man-
agement [4]. In this paper, we focus on two-stage linear
stochastic programs with fixed recourse of the form

minimize
x∈Rn

cTx+ Eξ[Q(x, ξ(ω))]

subject to Ax = b,

x ≥ 0

(1)

where
Q(x, ξ(ω)) = min

y∈Rm
qTξ y

s.t. Tξx+Wy = hξ

y ≥ 0.

This formulation aims at determining the present decision
x that minimizes the immediate cost cTx plus the expected
future cost over a set of possible scenarios. These scenarios
correspond to outcomes of a random variable ξ. Modern
industrial applications of stochastic programming often result
in optimization problems of a large scale. For example, the
unit-commitment problem in [5] has 16 384 scenarios and
four billion variables, which calls for effective parallelization
procedures. This typically involves exploiting the structure of
the stochastic program by mathematical decomposition.

A classical decomposition procedure for stochastic pro-
grams is the L-shaped algorithm [6], a cutting-plane method
with finite convergence guarantees. The method has been
heavily studied [7]–[10], and is typically able to converge

Martin Biel, Vien V. Mai, and Mikael Johansson are with the Division
of Decision and Control Systems, School of EECS, KTH Royal Institute
of Technology, SE-100 44 Stockholm, Sweden. Emails: {mbiel, maivv,
mikaelj}@kth.se.

to an optimal solution in few iterations. We have previously
demonstrated the efficacy of this method in distributed set-
tings [11]. We also noted that distributed L-shaped methods
suffer from scalability issues due to load imbalance between
master and worker nodes as the algorithm progresses. The
load imbalance stems from the master problem increasing
in size as cutting planes are added. In contrast, subgradient
methods such as the quasigradient algorithm [12] perform
a projection step each iteration, which involves solving a
quadratic program that does not increase in size. Therefore,
a parallel subgradient method with low iteration complexity
could potentially be competitive with L-shaped on large-scale
problems.

The projected subgradient method is a general-purpose
method for non-smooth convex optimization but it converges
slowly, even with a carefully selected stepsize. It has there-
fore been difficult to devise subgradient schemes that are
competitive with the L-shaped method. On the other hand,
the last few decades have witnessed significant advances
in the theory and practice of gradient-based methods for
minimization of smooth convex functions. Several algo-
rithms with optimal (worst-case) complexity guarantees have
been developed [13], [14], typically using acceleration tech-
niques inspired by Nesterov’s fast gradient scheme [15] and
Polyak’s heavy ball method [16]. While adding essentially
no extra computation or memory, these techniques tend to
speed-up the practical convergence of the original method
significantly. However, these fast methods are designed to
work on smooth problems. The smoothing technique [17]
is an attempt to accelerate the convergence also for non-
differentiable problems. The basic idea is to approximate
the original problem by a smooth one, which is then solved
by a (fast) gradient method. With the right amount of
smoothing, this approach enjoys strong theoretical conver-
gence guarantees and often displays much better practical
performance than the projected subgradient method. This
makes smoothing a promising approach for the design of
more scalable stochastic programming solvers.

In this work, we develop a fast smoothing scheme for
two-stage stochastic programs based on the Moreau enve-
lope [18]. Compared to similar approaches [17], [19], the
smoothing is applied to the primal form of the scenario sub-
problems, which simplifies the implementation significantly.
We derive problem-dependent approximation bounds and a
strong worst-case complexity guarantee when the smooth
approximation is paired with a fast gradient method. The
theoretical results highlight a trade-off between convergence
speed and accuracy, affected by the degree of smoothing.
To accelerate the computation of high-accuracy solutions,

we suggest a hybrid approach that initially uses the fast
smoothing approach and then switches to a (warm-started) L-
shaped which then rapidly finds the full accuracy solution.
We evaluate an efficient implementation of this method in
our software framework for stochastic programming [20].
The numerical experiments are performed in a multi-node
setup with stochastic programs distributed over 32 worker
nodes. The smoothing algorithm reduces the execution time
of L-shaped by a factor 2-10 on a range of applied problems.
Moreover, the hybrid approach achieves essentially the same
performance without sacrificing accuracy.

II. PRELIMINARIES

For the remainder of the paper, we consider finite two-
stage stochastic programs of the form

minimize
x∈Rn,ys∈Rm

cTx+

N∑
s=1

πsq
T
s ys

subject to Ax = b

Tsx+Wys = hs, s = 1, . . . , N

x ≥ 0, ys ≥ 0, s = 1, . . . , N,

(2)

where A ∈ Rp×n, Ts ∈ Rq×n, s = 1, . . . , N and W ∈
Rq×m. Scenario-dependent data ξs =

(
qs Ts hs

)T
is

drawn with probability πs from a discrete sample space Ω.
For problems with infinite sample space, the finite form (2)
above can be used to approximate (1) using sample-based
techniques (see [21], [22] for details).

By introducing X = {x ∈ Rn |Ax = b, x ≥ 0}, and,

Qs(x) = min
ys∈Rm

qTs ys

s.t. Wys = hs − Tsx
ys ≥ 0.

(3)

we can recast the stochastic program on the following form:

minimize
x∈X

f(x), (4)

where

f(x) = cTx+

n∑
s=1

πsQs(x). (5)

We restrict our attention to problems with complete recourse,
i.e. problems in which the positive linear span of W , posW ,
is the full space. It then follows that all second-stage sub-
problems (3) are feasible for every x ∈ X . Furthermore, the
following results hold:

Proposition 2.1 ([1]): Assume that posW = Rm. The
function Q(x) =

∑n
s=1 πsQs(x) then satisfies:

(i) Q(x) <∞, ∀x ∈ X
(ii) Q(x) is convex in x, ∀x ∈ X .

(iii) Q(x) is piecewise linear in x, ∀x ∈ X
These properties are the foundation for the design of efficient
algorithms for solving (4).

A. The L-shaped Algorithm

The L-shaped algorithm, originally proposed in [6], de-
composes (1) into a master problem and N subproblems
(one for each second-stage scenario). Here, we introduce
the multi-cut extension suggested in [7], which has better
convergence properties. The master problem is given by

minimize
x∈Rn

cTx+

N∑
s=1

θs

subject to Ax = b

∂Qs,kx+ θs ≥ qs,k, s = 1, . . . , N ∀k
x ≥ 0,

where the ∂Qs,kx + θs ≥ qs,k are cutting-plane constraints
obtained from solving subproblems of the form (3). It follows
from LP duality that λTs,k(hs − Tsx), where λs,k is the
dual optimizer of (3) at xk, is a support of Qs(x) at xk.
Consequently, N cutting planes can be determined each
iteration by introducing ∂Qs,k = λTs,kTs and qs,k = λTs,khs.
As the L-shaped algorithm progresses, the master problem is
re-solved to generate iterates xk, θs,k. The subproblems (3)
are then re-solved at the new iterate to generate tighter
cutting planes. This is repeated until the gap between the
upper bound Q(xk) =

∑n
s=1 πsQs(xk) and lower bound

θk =
∑n
s=1 θs,k reaches a desired relative tolerance. Because

W has a finite number of bases, the L-shaped algorithm is
finitely convergent [6].

Two well-known drawbacks of the L-shaped algorithm are
that initial iterations are typically inefficient and that the final
iterations are slowed by the accumulation of ineffective cuts
from the early iterations [1]. These issues can be mitigated to
a certain extent by regularizing the master problem [8]–[10].
In brief, regularization constrains the candidate search to a
neighborhood of the best iterate found so far. This stabilizes
the procedure and also enables the algorithm to warm-start
from a supplied starting point.

B. Projected Subgradient Descent

The reformulation (4) and Proposition 2.1 reveal that
stochastic programs on the form (2) are convex optimization
problems. The function f(x) defined in (5) is convex and
non-smooth (specifically, piecewise linear) and X is a closed
and convex set. To solve problem (4), the classical projected
subgradient method starts from x0 ∈ X and generates a
sequence of iterates {xk} defined by:

xk+1 = ΠX (xk − γkgk), (6)

where γk is the stepsize, gk is a subgradient of f at xk and

ΠX (x) = arg min
z∈X

{
‖z − x‖22

}
,

is the orthogonal projection of x onto X . When f describes
a stochastic program on the form (5), gk is simply

gk = c−
m∑
s=1

πs∂Qs,k,

where ∂Qs,k is computed as in the L-shaped method, while
ΠX (x) can be computed by solving a quadratic program.
Owing to its generality, the subgradient method suffers from
a slow rate of convergence. In particular, procedure (6)
needs O(1/ε2) iterations to find an ε-optimal solution when
minimizing a Lipschitz continuous and convex f . This is
in stark contrast to the optimal complexity O(1/

√
ε) for

minimization of smooth convex functions, which is achieved
by several variants of Nesterov’s acceleration scheme [15].

III. SMOOTHING PROCEDURE

Practical optimization problems are often equipped with
favorable structures that can be exploited in the design and
analysis of algorithms. Unlike the subgradient method, which
treats the objective function as a black box, the smoothing
procedure proposed in [17] carefully exploits the problem
structure to develop more efficient minimization algorithms.
The main idea is to: (i) replace the original nonsmooth
function with a nearby smooth one; and (ii) employ an
efficient gradient-based method to solve the smooth (but
approximate) problem. With this approach, one can find a
solution to the original problem in only O(1/ε) iterations
compared to O(1/ε2) of the subgradient method.

A. Smoothing
We now detail our smoothing strategy for the stochastic

program (4). For a given scenario s, consider the smooth
approximation given by:

Qsµ(x) = min
z∈Rn

{
Qs(z) +

1

2µ
‖z − x‖22

}
, (7)

where µ > 0 is some smoothing parameter. The function
can be recognized as the Moreau envelope of Qs(x). The
following results hold.

Proposition 3.1 ([18]): Given a convex function Qs(x),
the smooth approximation Qsµ(x) satisifes:

(i) Qsµ(x) has a unique minimizer given by:

proxµQs
(x) = arg min

z∈Rn

{
Qs(z) + 1/(2µ)‖z − x‖22

}
.

(ii) Qsµ(x) is continuously differentiable with gradient

∇Qsµ(x) =
1

µ
(x− proxµQs

(x)).

(iii) Qsµ(x) is (1/µ)-smooth:

‖∇Qsµ(x)−∇Qsµ(y)‖2 ≤
1

µ
‖x− y‖2 ∀x, y

Because Qs(x) is the optimal value of a linear program,
Qsµ(x) and proxµQs

(x) can be obtained by solving a
quadratic program using general-purpose solvers. Next, we
derive approximation bounds for the smoothing function.

Theorem 3.2: There exists a constant Γ > 0 depending on
W such that

Qsµ(x) ≤ Qs(x) ≤ Qsµ(x) + µΓ‖qs‖2‖Ts‖
2
2.

Proof: By the definition of Qsµ(x), it holds that

Qsµ(x) = min
z∈Rn

{
Qs(z) + 1/(2µ)‖z − x‖22

}
≤ Qs(x) + 1/(2µ)‖x− x‖22 = Qs(x),

proving the first inequality. Recall that by strong duality, for
any x there exists an optimal dual solution λ̂s(x) such that
Qs(x) = λ̂s(x)T (hs−Tsx). Moreover, because Qs is convex
it holds that Qs(z) ≥ λ̂s(x)T (hs−Tsz) for all z. Combining
these result yields Qs(z)−Qs(x) ≥ −λ̂s(x)T (z−x). Now,

Qsµ(x)−Qs(x) = min
z∈Rn

{
Qs(z)−Qs(x) +

1

2µ
‖z − x‖22

}
≥ min
z∈Rn

{
−λ̂s(x)TTs(z − x) +

1

2µ
‖z − x‖22

}
= −µ

2

∥∥∥λ̂(x)TTs

∥∥∥2
2

⇔ Qs(x) ≤ Qsµ(x) +
µ

2
‖Ts‖22

∥∥∥λ̂s(x)
∥∥∥2
2

where the final equality is obtained by recognizing that
z − x = µλ̂s(x)TTs is the optimizer of the quadratic
minimization problem. To remove the dependence on the
specific dual solution λ̂s(x), we consider

maximize
λs∈Rq

‖λs‖22

subject to WTλs ≤ qs
By invoking Hoffman’s Lemma [23], we can show that there
exists a constant Γ > 0 depending on W such that

max
WTλs≤qs

‖λs‖22 ≤ 2Γ‖qs‖2.

See [19] for a derivation of this intermediate step. Combining
the above results yields

Qs(x) ≤ Qsµ(x) + µΓ‖qs‖2‖Ts‖
2
2,

proving the second inequality.
Applying the smooth approximation to all scenarios yields

the following smooth objective function:

fµ(x) = cTx+

n∑
s=1

πsQsµ(x),

which by Theorem 3.2 satisfies

fµ(x) ≤ f(x) ≤ fµ(x) + µΓq̄ T̄ , (8)

where

q̄ =

n∑
s=1

πs‖qs‖2, T̄ =

n∑
s=1

πs‖Ts‖22.

It is also easy to verify that the gradient ∇fµ(x), given by

∇fµ(x) = c+

n∑
s=1

πs∇Qsµ(x),

is Lipschitz continuous with constant 1/µ. Thus, the value
µ controls the trade off between the quality of the approxi-
mation in (8) and the smoothness of ∇fµ(x).

Having established the smooth approximation fµ for f , it
remains to solve the following convex problem:

minimize
x∈X

fµ(x). (9)

The smoothing framework does not specify how to choose
a particular method for solving (9) as actual performance

is often problem-dependent. Nevertheless, to obtain optimal
theoretical complexity bounds, smoothing is often coupled
with an accelerated gradient method. Thus, we assume
access to an efficient first-order method M for solving the
optimization problem:

minimize
x∈X

ϕ(x),

where ϕ is a convex and L-smooth function, and X is
a closed and convex set. Specifically, there should exist
a constant Λ such that the method generates a sequence
{xk} ∈ X satisfying

ϕ(xk)− ϕ? ≤ LΛ/k2,

where ϕ? = minx∈X ϕ(x). For example, if we chooseM to
be the FISTA method [24] with the constant stepsize 1/L =
µ, the resulting algorithm can be summarized as:

xk+1 = ΠX

(
− µc+

n∑
s=1

πs proxµQs
(yk)

)
tk+1 =

(
1 +

√
1 + 4t2k

)
/2

yk+1 = xk+1 +
tk − 1

tk+1
(xk+1 − xk) ,

where t0 = 1, x0 = y0 ∈ X . We can now establish the
following convergence result:

Theorem 3.3: Let {xk}∞k=1 be generated by applying the
efficient method M on the smooth approximation problem

minimize
x∈X

fµ(x).

Then

f(xk)− f(x?) ≤ µΓq̄ T̄ +
Λ

µk2
.

In particular, if µ = ε/(2Γq̄T̄), then f(xk)− f? ≤ ε after

k =
2
√

Γq̄T̄Λ

ε

iterations.
Remark 3.1: The theorem implies that the suboptimality

gap converges to a residual error (proportional to µ) when k
is sufficiently large. Moreover, with a proper choice of µ, the
iteration complexity is of the order O(1/ε), which is better
than the well-known O(1/ε2) of the subgradient descent
method. The choice of µ will affect both the convergence
speed and the residual error.

Proof: Since fµ is (1/µ)-smooth, executing k iterations
of M yields

fµ(xk)− f?µ ≤ Λ/(µk2), (10)

where f?µ = minx∈X fµ(x). Now, let x? be an optimal
solutions of (4), we have

f(xk)− f(x?) = f(xk)− fµ(xk) + fµ(xk)− f?µ
+ f?µ − f(x?). (11)

Note that f?µ ≤ fµ(x?) and by Theorem 3.2:

fµ(x?) ≤ f(x?) and f(xk)− fµ(xk) ≤ µΓq̄ T̄ . (12)

Combining (10)–(12) thus yields

f(xk)− f(x?) ≤ µΓq̄ T̄ + Λ/(µk2). (13)

Finally, plugging µ = ε/(2Γq̄ T̄) and k ≥ 2
√

Γq̄ T̄Λ/ε into
(13) completes the proof.

B. A hybrid approach

The result in Theorem 3.3 suggests a trade-off between
speed and accuracy in the choice of the smoothing parameter
µ. In the interest of devising a practical and efficient method,
we propose a hybrid approach. Regularizing the L-shaped
method, using for example any of the bundle procedures
suggested in [8]–[10], allows warm-starting the method from
a supplied starting point x0. We propose using larger values
of µ and then run the smoothing procedure until it stalls with
some error. At this point, we apply a regularized L-shaped
procedure from the current iterate. This approach addresses
the drawbacks of both the smoothing procedure and the
L-shaped algorithm. It could allow more efficient choices
of the smoothing parameter µ as the consequent objective
error can be mitigated by L-shaped. In turn, we address
the fact that initial iterations of the L-shaped algorithm are
often inefficient by providing a much stronger starting point
from the smoothing procedure. Also, we do not have to
handle ineffective cuts from early iterations of the L-shaped
procedure, which improves scalability. These improvements
are demonstrated practically in our numerical experiments
shown in Section V, where our hybrid approach consistently
outperforms L-shaped without sacrificing accuracy.

IV. IMPLEMENTATION

We implement the smoothing procedure in our
general-purpose framework for stochastic programming,
StochasticPrograms.jl [20], written in the Julia
programming language. It provides a domain-specific
language for stochastic programming, as exemplified in
Listing 1, leveraged by the algebraic modeling language
JuMP [25]. Moreover, the framework has distributed
capabilities. Instantiated stochastic programs can be
distributed over multiple worker nodes and then be solved
in parallel using specialized solvers.

Listing 1
EXAMPLE DECLARATION OF A STOCHASTIC PROGRAM.� �

@stochastic_model begin
@stage 1 begin

@decision(model, x[i in 1:10] >= 0)
@objective(model, Min, sum(x))

end
@stage 2 begin

@parameters W
@uncertain q T h
@recourse(model, y[j in 1:5] >= 0)
@objective(model, Max, q ·y)
@constraint(model, T * x + W * y .== h)

end
end� �

The value of any first-stage variable annotated with
@decision is made available in each second-stage instance
through fixed variables. This allows us to efficiently formu-
late (3). Consequently, we can calculate Qs(x) and the re-
maining quantities required to implement the L-shaped algo-
rithm. We can also seamlessly unfix the first-stage variables
and add penalty terms to acquire the form (7) required for the
smoothing procedure. This is the strength in implementing
smoothing using the primal form. It can effortlessly be added
to our existing framework, which allows domain experts to
formulate stochastic programs with expressive syntax.

V. NUMERICAL EXPERIMENTS

In this section, we outline our experimental setup and
present the results from our large-scale experiments.

A. Experimental Setup

We evaluate the smoothing procedure on a collection of
applied problems presented in [22]. The problems are openly
available1 in the SMPS format, which is supported by the
software framework. Reasonably tight confidence intervals
are obtained for all test problems using a sample size of
5000 [22]. We, therefore, construct sampled instances of
each problem with 5000 scenarios when evaluating algorithm
performance. We provide a summary of the test set problems
and their respective problem dimensions in Table I.

Name Application # Variables # Constraints

gbd Aircraft allocation 25 004 50 017
20term Vehicle assignment 620 003 3 820 064
ssn Telecom network design 875 001 3 530 089

TABLE I
TEST SET DESCRIPTION DISPLAYING THE NAME AND APPLICATION OF

EACH PROBLEM AS WELL AS DIMENSIONS OF THE (2) PROBLEM

INSTANCE.

The experiments are performed in a multi-node setup. The
master node is a laptop computer with a 2.6 GHz Intel Core
i7 processor and 16 GB of RAM. We spawn workers on
a remote multi-core machine with two 3.1 GHz Intel Xeon
processors (total 32 cores) and 128 GB of RAM. Throughout,
the Gurobi optimizer [26] is used to solve subproblems.

For each sampled test problem we carry out the follow-
ing procedure. First, we apply the L-shaped algorithm and
measure the time taken to converge to optimality within a
relative tolerance of 1× 10−2. Level-set decomposition [10]
is used to accelerate the procedure. We then benchmark the
smoothing procedure, where FISTA is used to solve (9),
on the same problem. Suitable values for the smoothing
parameter µ and the stepsize γ are determined by a crude
grid-search. Notably, we find that tuning the stepsize is
beneficial for performance even when running the FISTA
scheme. Finally, we benchmark the hybrid approach. That is,
we run the smoothing procedure until progress slows down

1http://pages.cs.wisc.edu/~swright/stochastic/
sampling/

upon which we warm-start a regularized L-shaped procedure
from the current iterate. Each experiment is repeated five
times to reduce background noise from operating system
task switching. We consider the median time when reporting
the results as it is less sensitive to outliers. All experiments
are run from the same randomized starting point. In both
algorithms, the subproblems are solved in parallel on the
32 worker nodes. The resulting optimality cuts or gradients
are communicated back to the master node which performs
the respective iterate update. For a thorough introduction
to distributed L-shaped methods, we refer to our earlier
work [11].

B. Results

The numerical results are summarized in Table II. In
addition, we visualize the solution progress for each problem
in Fig. 1, Fig. 2, and Fig. 3. Overall, the gradient schemes
outperform L-shaped in all three problem instances, reducing
the running time by a factor of 2-10. The smoothing proce-
dure makes fast initial progress but does not reach the same
solution accuracy as the L-shaped method. Notably, we used
a larger value 1× 10−2 of the smoothing parameter µ on
the ssn problem, because it gave a faster performance. The
resulting objective error is higher than the other problems, as
expected by the result in Theorem 3.3. Finally, we observe
that the hybrid scheme is successful in reaching the same
relative tolerance at L-shaped while retaining a significant
speedup from the smoothing procedure.

Problem L-shaped Smoothing Hybrid
T [s] T [s] ε [%] T [s] ε [%]

gbd 20.77 4.93 1.71 8.73 1.1× 10−4

20term 296.38 22.34 1.4 46.39 3.5× 10−5

ssn 106.87 48.21 13.72 60.07 1.7× 10−2

TABLE II
EXPERIMENTAL RESULT SUMMARY. DISPLAYS THE TIME T REQUIRED

FOR L-SHAPED TO REACH A RELATIVE TOLERANCE OF 1× 10−2 . ALSO

SHOWS THE TIME T REQUIRED BY THE SMOOTHING SCHEME AND THE

HYBRID SCHEME TO REACH THE RESULTING OBJECTIVE TOLERANCE ε

RELATIVE TO THE L-SHAPED VALUE.

0 2 4 6 8 10 12 14 16 18 20 22 24
103.2

103.4

103.6

103.8

Time [s]

O
bj

ec
tiv

e
f
(x
)

gbd

L-shaped
Smoothing procedure

Hybrid procedure

Fig. 1. Algorithm performance comparison on the gbd problem. The
smoothing procedure is configured by µ = 1× 10−4 and γ = 0.01.

40 80 120 160 200 240 280 320
105.4

105.6

105.8

106

Time [s]

O
bj

ec
tiv

e
f
(x
)

20term

L-shaped
Smoothing procedure

Hybrid procedure

Fig. 2. Algorithm performance comparison on the 20term problem. The
smoothing procedure is configured by µ = 1× 10−4 and γ = 0.01.

0 10 20 30 40 50 60 70 80 90 100 110

101

102

Time [s]

O
bj

ec
tiv

e
f
(x
)

ssn

L-shaped
Smoothing procedure

Hybrid procedure

Fig. 3. Algorithm performance comparison on the ssn problem. The
smoothing procedure is configured by µ = 1× 10−2 and γ = 75.

VI. CONCLUDING REMARKS

In summary, we have presented a fast smoothing scheme
for solving two-stage stochastic programs. The primal formu-
lation through the Moreau envelope allowed us to effortlessly
implement the method as an extension in our software
framework StochasticPrograms.jl. We have also given
a problem-dependent approximation bound in Theorem 3.2
and a complexity result when the smooth approximation
is combined with a fast gradient method like FISTA in
Theorem 3.3. We showcase strong results in distributed
numerical experiments. The smoothing procedure consis-
tently outperforms a regularized L-shaped algorithm. The
hybrid scheme achieves the same accuracy as L-shaped but
still offers a considerable reduction in solution speed. This
indicates a potential resurgence of gradient-based methods
for solving stochastic programs.

We aim to further explore accelerated gradient methods for
efficiently solving stochastic programs. Also, the promising
results of our hybrid approach suggest another direction
of future work. A more advanced implementation could
entail switching between L-shaped iterations and gradient
iterations. This could potentially yield further improvements
than the current version that only switches once from the
smoothing scheme to L-shaped.

REFERENCES

[1] J. R. Birge and F. Louveaux, Introduction to Stochastic Programming.
Springer New York, 2011.

[2] R. Louca and E. Bitar, “Stochastic ac optimal power flow with affine
recourse,” in 2016 IEEE 55th Conference on Decision and Control
(CDC), 2016, pp. 2431–2436.

[3] H. Shi, Y. Chu, and F. You, “Integrated planning, scheduling, and
dynamic optimization for continuous processes,” in 53rd IEEE Con-
ference on Decision and Control, 2014, pp. 388–393.

[4] R. Shone, K. Glazebrook, and K. G. Zografos, “Applications of
stochastic modeling in air traffic management: Methods, challenges
and opportunities for solving air traffic problems under uncertainty,”
European J. of Operational Research, vol. 292, no. 1, pp. 1–26, 2021.

[5] C. G. Petra, O. Schenk, and M. Anitescu, “Real-Time Stochastic
Optimization of Complex Energy Systems on High-Performance Com-
puters,” Computing in Science Engineering, vol. 16, no. 5, pp. 32–42,
2014.

[6] R. Van Slyke and R. Wets, “L-Shaped Linear Programs with Applica-
tions to Optimal Control and Stochastic Programming,” SIAM Journal
on Applied Mathematics, vol. 17, no. 4, pp. 638–663, 1969.

[7] J. R. Birge and F. V. Louveaux, “A multicut algorithm for two-
stage stochastic linear programs,” European Journal of Operational
Research, vol. 34, no. 3, pp. 384–392, 1988.

[8] A. Ruszczyński, “A regularized decomposition method for minimizing
a sum of polyhedral functions,” Mathematical Programming, vol. 35,
no. 3, pp. 309–333, 1986.

[9] J. Linderoth and S. Wright, “Decomposition Algorithms for Stochastic
Programming on a Computational Grid,” Computational Optimization
and Applications, vol. 24, no. 2-3, pp. 207–250, 2003.

[10] C. I. Fábián and Z. Szőke, “Solving two-stage stochastic programming
problems with level decomposition,” Computational Management Sci-
ence, vol. 4, no. 4, pp. 313–353, 2006.

[11] M. Biel and M. Johansson, “Distributed L-shaped algorithms in Julia,”
in 2018 IEEE/ACM Parallel Applications Workshop, Alternatives To
MPI (PAW-ATM). IEEE, 2018.

[12] Y. Ermoliev, Stochastic quasigradient methods. Springer-Verlag,
Berlin, 1988, pp. 141–186.

[13] Y. Nesterov et al., Lectures on convex optimization. Springer, 2018,
vol. 137.

[14] A. Beck, First-order methods in optimization. SIAM, 2017, vol. 25.
[15] Y. E. Nesterov, “A method for solving the convex programming

problem with convergence rate o (1/kˆ 2),” in Dokl. akad. nauk Sssr,
vol. 269, 1983, pp. 543–547.

[16] B. T. Polyak, “Some methods of speeding up the convergence of iter-
ation methods,” USSR Computational Mathematics and Mathematical
Physics, vol. 4, no. 5, pp. 1–17, 1964.

[17] Y. Nesterov, “Smooth minimization of non-smooth functions,” Math-
ematical programming, vol. 103, no. 1, pp. 127–152, 2005.

[18] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and mini-
mization algorithms. Springer science & business media, 1993, vol.
305.

[19] S. Ahmed, “Smooth minimization of two-stage stochastic linear pro-
grams,” Manuscript, Georgia Institute of Technology, 2006.

[20] M. Biel and M. Johansson, “Efficient stochastic programming in Julia,”
arXiv preprint arXiv:1909.10451, 2019, submitted for consideration to
Mathematical Programming Computation. Under review.

[21] W.-K. Mak, D. P. Morton, and R. Wood, “Monte Carlo bounding
techniques for determining solution quality in stochastic programs,”
Operations Research Letters, vol. 24, no. 1, pp. 47 – 56, 1999.

[22] J. Linderoth, A. Shapiro, and S. Wright, “The empirical behavior of
sampling methods for stochastic programming,” Annals of Operations
Research, vol. 142, no. 1, pp. 215–241, 2006. [Online]. Available:
https://doi.org/10.1007/s10479-006-6169-8

[23] A. J. Hoffman, “On approximate solutions of systems of linear
inequalities,” Journal of Research of the National Bureau of Standards,
vol. 49, pp. 263–265, 1952.

[24] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM journal on imaging
sciences, vol. 2, no. 1, pp. 183–202, 2009.

[25] I. Dunning, J. Huchette, and M. Lubin, “JuMP: A modeling language
for mathematical optimization,” SIAM Review, vol. 59, no. 2, pp. 295–
320, 2017.

[26] G. Optimization, “Gurobi optimizer reference manual,” 2020, http:
//www.gurobi.com.

