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Abstract—Cochannel interference is one of the inevitable
deleterious components in designing and analyzing of a wireless
network. The use of multiple antennas at both transmitting and
receiving nodes is a promising technique to suppress and/or
alleviate the effect of cochannel interference on capacity. In
this paper, we assess the effects of both antenna correlation
and cochannel interference on the ergodic capacity of multiple-
input multiple-output (MIMO) channels with covariance feed-
back. In particular, we consider a general family of spatial
fading correlation model—called unitary-independent-unitary—
which encompasses most of zero-mean channels with arbitrary
fading profiles including the popular separable correlation chan-
nel models. We derive the average minimum mean-square error
and signal-to-interference-plus-noise ratio of the parallel spatial
streams using Berezin’s supermathematics. We then put forth
the structure of optimal input covariance matrix maximizing the
mutual information connected with the necessary and sufficient
conditions as a generalization of the noise-limited case, which is
tested by a simple iterative algorithm. Together with the powerful
supermathematical framework, the result in the paper enables
us to quantify the multiuser MIMO interference effects on the
capacity in terms of spatial correlation and interference power
heterogeneity.

Index Terms—Achievable rate, cochannel interference, Grass-
mann algebra, minimum mean-square error (MMSE), multiple-
input multiple-output (MIMO), power allocation, supermathe-
matics, unitary-independent-unitary (UIU) channel model.

I. INTRODUCTION

THE potential benefit of multiple-input multiple-output

(MIMO) systems has been spurred to integrate key tech-

nologies into the future wireless communication systems [1]–

[10]. The information theoretic analysis of the MIMO capacity

showed that it scales linearly with the number of antennas

operating on a single link with additive white Gaussian noise

(AWGN) in rich-scattering wireless environments. However,

the potential advantage of MIMO system may be limited by

the spatial fading correlation due to closely-packed antennas

and/or cochannel interference due to heterogeneous systems

operating in the same spectrum [11]–[17].
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When the channel state information (CSI) is only available

at the receiver, the ergodic capacity of the independent and

identically distributed (i.i.d.) MIMO Rayleigh fading channel

was first analyzed in [2], in which it was proven that isotropic

i.i.d. Gaussian inputs are capacity-achieving. In order to ac-

count for the more realistic propagation environments—more

specifically, the capacity loss due to spatial correlation—a

large wave of works has been spawned on the capacity analysis

including: i) correlated MIMO Rayleigh-faded channels with

one side correlation [12], [18]; ii) doubly correlated MIMO

Rayleigh-faded channels [13], [19], [20]; iii) rank-deficient

channels such as double scattering and keyhole channels [11],

[21]; and spare channels with virtual representation [22], [23].

When the statistical CSI is available at the transmitter, it can

be exploited to increase the capacity of the MIMO system.

To that end, the optimal input covariance matrix structures

of the covariance feedback system have been characterized

for multiple-input single-output (MISO) and MIMO channels

[24]–[26]. It was shown that i) the eigenvectors of the capacity-

achieving input covariance matrix coincide with those of

the channel covariance matrix; ii) the number of positive

eigenvalues of the capacity-achieving input covariance matrix

corresponds to the number of active directions to which the

transmit signals are sent out; and iii) these eigenvalues (cor-

responding to the power allocation) can be solved by iterative

algorithms. If the capacity-achieving input covariance matrix

has rank one, the power allocation strategy is referred to as

beamforming. The capacity and corresponding beamforming

solutions for noise-limited MIMO systems with correlated

Rayleigh-faded channels have been investigated in [27]–[29].

Most of the above works use the separable correlation model

(also known as Kronecker product-form correlation model)

whose accuracy is verified, especially, when scatters are locally

rich at either the transmitter or receiver [30]. However, in

spite of their analytic tractability and sufficient accuracy in

certain environments, the separable correlation models often

give a poor performance prediction of MIMO systems [30],

[31]. To account for the general structure of MIMO channels

with spatial correlation, the unitary-independent-unitary (UIU)

channel model has been proposed which embraces most of

zero-mean channel models including the separable correlation

model [26].1

Another intrinsic property having an adverse impact on the

1Note that the UIU model dose not include non-zero mean channels. Even
in the absence of interference, capacity characterizations are available only few
specific channels such as i.i.d. Rician fading channels (see [14] and references
therein).
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MIMO capacity is the presence of cochannel interference.

The simulation study showed that cochannel interference can

seriously degrade the overall capacity of MIMO systems [32].

Along with the impact of cochannel interference on the MIMO

capacity, many studies have been devoted to the analysis of

MIMO systems [15]–[17], [33]–[37]. Specifically, the opti-

mum transmission strategies maximizing the ergodic MIMO

capacity have been studied in [15], [34], and the MIMO

capacity in large antenna systems over uncorrelated i.i.d.

Rayleigh fading channel and separable correlation Rayleigh

fading channel has been analyzed in [16] and [35], respec-

tively. In [16], the authors also have studied the capacity-

achieving input covariance in the regime of large numbers of

antennas. In [15] and [34], it was found that adding more active

transmit antennas at the probe transmitter can result in a lower

overall system achievable rate at low aggregate signal-to-

interference-plus-noise ratio (SINR) compared to the system

allocating all the power budget to one transmit direction. The

exact closed-form solution was studied for the capacity of

uncorrelated MIMO networks in the presence of interference

which is valid for an arbitrary number of interference antennas

having possibly unequal power levels [17].

In the absence of cochannel interference, a set of necessary

and sufficient conditions for optimal power allocation was

investigated under the assumption that the statistical CSI is

available at the transmitter in MISO channels [24] and UIU

MIMO channels [26]. These conditions enable us to provide

efficient iterative algorithms to find the input covariance matrix

which maximizes the ergodic mutual information. An ana-

lytical result has been provided to reduce the computational

burden in Rayleigh-faded channels with separable correlations

[24]. It was shown that the power allocation algorithm requires

to evaluate the average minimum mean-square error (MMSE)

and SINR on the linear estimation of the spatial streams at

each iteration [26]. This task resorts to the time-consuming

Monte-Carlo expectation because the main difficulty in the

exact analysis for general cases—unequal-power and spatially-

correlated interferers—arises due to the absence of a tractable

analytic framework to evaluate the random matrices relevant

to the SINR.

In this paper, we develop a framework to characterize the

ergodic capacity in general UIU MIMO models in the presence

of multiple MIMO cochannel interferers. We consider a perfect

channel knowledge at the receiver, while the transmitter has

access only to the knowledge of long-term statistics (covari-

ance). The main results of this paper can be summarized as

follows.

• We first introduce the mathematical framework necessary

to derive the closed-form expressions for the average

MMSE and SINR on the linear estimation of the spatial

streams. These streams play a central role in the optimum

power allocation algorithm to maximize the capacity over

correlated MIMO Rayleigh-faded interference channels

with separable correlations (see Theorems 1 and 2). The

key ingredient of our analysis is Berezin’s supermathe-

matics that treats the mathematical analysis and algebra

for functions of both commuting and anticommuting

variables on an equal footing [4], [38]–[40].

• We develop a necessary and sufficient condition for input

optimization and investigate its MMSE representation. It

is directly applicable to the general MIMO channels with

an arbitrary power distribution of cochannel interferers,

each is spatially correlated across receiving antennas (see

Theorem 3). The analytical solutions for the average

MMSE and SINR are valid for any number of unequal-

power spatially-correlated interferers, each with an arbi-

trary number of transmit antennas (see Theorem 4). The

simple iterative algorithm can be employed to find the

optimum input power allocation without computational

complexity (see Algorithm 1).

• We characterize the asymptotic capacity per receiver

antenna as the antenna numbers at transmitters (probe

transmitter and interferers) and receivers tend to infinity

(see Theorem 5). We also introduce the fixed-point itera-

tion method which converges very quickly to any desired

accuracy level for calculating the asymptotic ergodic

capacity (see Remark 5). Our result holds for a very

general case when the channel gain has zero mean and

arbitrary distributions. It is unveiled that the estimation

of capacity in this work is powerful even for a small

dimensional system.

The paper is organized as follows. In Section II, we describe

the system model and then we formulate the optimum power

allocation problem to maximize mutual information over input

covariances for UIU channels. In Section III, we develop a

mathematical methodology to analyze the average MMSE and

SINR using the superanalysis framework. In Section IV, we

characterize the conditions for the optimal power allocation

and investigate the power optimization strategy in the presence

of cochannel interference. Section V studies the asymptotic

ergodic capacity of UIU MIMO channel with covariance

feedback. In Section VI, we present some numerical results

and finally, Section VII concludes the paper.

Throughout the paper, we shall adopt the notation: i) random

variables are displayed in sans serif, upright fonts; their real-

izations in serif, italic fonts; and ii) vectors and matrices are

denoted by bold lowercase and uppercase letters, respectively.

For example, a random variable and its realization are denoted

by x and x; a random vector and its realization are denoted

by x and x; a random matrix and its realization are denoted

by X and X , respectively. The notation and symbols used in

the paper are tabulated to Table I. The basic concepts and

formulae of the branch of Berezin’s supermathematics can

be found in [4, Table II], [16, Appendix II], [38]–[41] and

references therein.

II. MODELS AND PROBLEM FORMULATION

We consider an (n0, [n1, . . . , nL] , nR)-MIMO interference

channel where n0 transmit and nR receive antennas are

equipped at the probe (desired) transmitter and receiver,

respectively. There exist L cochannel interferers, each is

equipped with nℓ transmit antennas, ℓ = 1, 2, . . . , L.
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TABLE I
NOTATION AND SYMBOLS

R Real numbers

R+ Nonnegative real numbers

R++ Positive real numbers

Z+ Nonnegative integers

C Complex numbers

G Grassmann numbers

 Imaginary unit:  =
√
−1

1 {·} Indicator function

(·)∗ Complex conjugate

(·)† Transpose conjugate
a.s.→ Almost sure convergence

In n× n identity matrix

tr (A) Trace of a matrix A

rank (A) Rank of a matrix A

A < B Löwner partial ordering for Hermitian matrices A and B

⊗ Kronecker product

⊕ Direct sum of matrices

eigi(A) Eigenvalues of A ∈ Cn×n < 0 in any order, i = 1, 2, . . . , n

̺ (A) Number of nonzero distinct eigenvalues of A ∈ Cn×n < 0

eig[i](A) Ordered nonzero distinct eigenvalues of A ∈ Cn×n < 0 in decreasing order such that

eig[1](A) > eig[2](A) > · · · > eig[̺(A)](A)

τi (A) Multiplicity of the ith ordered nonzero distinct eigenvalue eig[i](A)

E {·} Expectation operator

Var {X} Variance of X

φX (s) Moment generating function of X: φX (s) , E
{

e−sX
}

CN
(

µ, σ2
)

Circularly symmetric complex Gaussian distribution with mean µ and variance σ2

Ñm,n Complex Gaussian matrix whose entries are independent CN (0, 1)

Ñm,n (M ,Σ,Ψ) Complex Gaussian matrix with mean matrix M ∈ Cm×n, and covariance matrix

Σ ⊗Ψ where Σ ∈ Cm×m < 0 and Ψ ∈ Cm×m < 0 are Hermitian

Γ (z) Euler gamma function [42, eq. (8.310.1)]

pFq (·) Generalized hypergeometric function [42, eq. (9.14.1)]

u (z) Heaviside step function

δ (z) Dirac’s delta function

δ(n) (z) nth derivative of δ (z)

F
−1
(ω)

{Y (ω)} (t) Inverse Fourier transform of Y (ω): F−1
(ω)

{Y (ω)} (t) = 1
2π

∫∞
−∞ Y (ω) eωtdω.

F
−1
(ω1, ω2)

{Y (ω1, ω2)}(t1, t2) Two-dimensional Inverse Fourier transform of Y (ω):

F
−1
(ω1, ω2)

{Y (ω1, ω2)}(t1, t2) = 1
4π2

∫∞
−∞

∫∞
−∞ Y (ω1, ω2) eω1t1+ω2t2dω1dω2.

O (·) Bachmann-Landau notation: f (x) = O (g (x)) as x → x0 ⇔ limx→x0
f(x)
g(x)

= c < ∞.

o (·) Bachmann-Landau notation: f (x) = o (g (x)) as x → x0 ⇔ limx→x0

f(x)
g(x)

= 0.

Xi,j(A) The (i, j)th characteristic coefficient of A [43, Definition 4]

A(k) The kth constriction matrix of A: A(k) ,
⊕m

i=1,i6=k eigi(A) where A ∈ Cm×m < 0.

A(k) The kth dilation matrix of A: A(k) ,
(
⊕m

i=1 eigi(A)
)

⊕ eigk(A)

where A ∈ Cm×m < 0.

ek (A) The kth eigenpolynomial of A:

ek (A) ,
∑

i1<i2<...<ik

∏k
j=1 eigij

(A) where A ∈ Cm×m < 0.

ζ (A1,A2, . . . ,An) The complete eigenpolynomial:

ζ (A1,A2, . . . ,An) ,
∑mini{rank(Qi)}

k=0 k!
∏n

i=1 ek (Ai) where Ai ∈ Cmi×mi < 0.

A. Signal Model

The nR-dimensional received signal vector at the probe

receiver is given by

y =

√
snr

n0
H̀0x0 +

L∑

ℓ=1

√

inrℓ

nℓ
H̀ℓxℓ + z (1)

where x0 ∈ C

n0 and xℓ ∈ C

nℓ are the desired and ℓth

interfering signals with E

{

‖x0‖
2
}

= n0 and E

{

‖xℓ‖
2
}

=

nℓ, respectively; H̀0 ∈ C

nR×n0 and H̀ℓ ∈ C

nR×nℓ are the

channel matrices for the desired and ℓth interfering links with

E
{
tr
(
H̀0H̀

†
0

)}
= n0nR and E

{
tr
(
H̀ℓH̀

†
ℓ

)}
= nℓnR, respec-

tively; snr and inrℓ are the signal-to-noise ratio (SNR) and the

ℓth interference-to-noise ratio (INR), respectively; and z is the

nR-dimensional (circularly symmetric) complex additive white

Gaussian noise vector with normalized covariance InR . The

L interfering signals are unknown to the desired receiver and

all transmit signals are assumed to be zero-mean Gaussian.

Note that all the random quantities x0, xℓ, H̀0, H̀ℓ, and z

are statistically independent. Let the interference-plus-noise
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covariance matrix conditioned on the channel realizations be

K = I +

L∑

ℓ=1

inrℓ

nℓ
H̀ℓΣℓH̀

†
ℓ (2)

where Σℓ = E
{
xℓx

†
ℓ

}
is the input covariance of the ℓth

interfering signal with tr (Σℓ) = nℓ. Then, the mutual

information in bits per second per hertz (bits/s/Hz) between

the input x0 and output y for the desired link is [15], [17],

[35]

I
(

x0; y,
{
H̀k

}L

k=0

)

= E

{

log2 det

(

I +
snr

n0
H̀0Σ0H̀

†
0K

−1

)}

(3)

where Σ0 = E
{
x0x

†
0

}
is the input covariance of the desired

signal with tr (Σ0) = n0.

B. Channel Model

To account for the general structure of MIMO channels, we

use a class of UIU MIMO models as follows (see, e.g., [14],

[26], [31]):

H̀k = RkHkT
†
k, k = 0, 1, . . . , L (4)

where Rk and T k are nR × nR and nk × nk deterministic

unitary matrices; and Hk ∈ CnR×nk is the Karhunen–Loève

transform (KLT) of H̀k and has independent entries whose

marginal distributions are symmetric with respect to zero. Let

Ωk ∈ RnR×nk

+ be a gain matrix assembling the variances of

the entries of Hk such that its (i, j)th entry

(Ωk)i,j = E

{∣
∣(Hk)i,j

∣
∣
2
}

(5)

determines the average power coupling between the jth

transmit and ith receive antenna elements of the kth link.

This UIU channel structure embraces a variety of MIMO

channel models including: i) the joint transmit-receive cor-

relation model [30] if Rk and T k are unitary matrices whose

columns are the eigenvectors of one-sided correlation matrices

R̃k = E
{
H̀kH̀

†
k

}
and T̃ k = E

{
H̀

†
kH̀k

}
, respectively; ii)

the linear virtual channel representation [44] if Rk and T k

are Fourier matrices (chosen irrespective of channel corre-

lation) for uniform linear arrays (ULAs) at both sides; iii)

the Kronecker (or separable correlation) model [19], [45] if

the average power-coupling matrix Ωk is rank one such that

(Ωk)i,j = eigi

(

R̃k

)

eigj

(

T̃ k

)

; and iv) the independent and

nonidentically distributed (IND) model if Rk = InR and

T k = Inℓ
for polarization/pattern diversity or distributed

MIMO. In all cases i)–iv), the entries of Hk are independent

zero-mean Gaussian.

C. Problem Formulation

We consider perfect channel knowledge at the receiver,

while the transmitter has access only to statistical channel

knowledge. In practice, tracking channel states at the trans-

mitter is quite challenging—especially for multi-dimensional

MIMO channels. Therefore, partial channel knowledge of

long-term statistics (covariance) at the transmitter is more

acceptable for practical scenarios (see, e.g., [16], [24], [25],

[27]–[29], [37], [46]–[48]). In this case, we can obtain the

optimal structure of the input covariance Σ0 that maximizes

the mutual information (3) as in the following proposition.

Proposition 1: Let Σ0 = V 0PV
†
0 be the eigenvalue

decomposition for the input covariance Σ0 of the probe

transmitter, where V 0 is a unitary matrix and P =
diag (p1, p2, . . . , pn0). Then, the optimal V 0 that maximizes

the mutual information (3) under the interference power envi-

ronment (inrℓ,Σℓ), ℓ = 1, 2, . . . , L, is V ⋆
0 = T 0.

Proof: The proof is an almost verbatim copy of the proof

of [26, Theorem 1] in the absence of interference.

We suppose that each cochannel interferer (as well as

the desired transmitter) employs the input covariance struc-

ture stated in Proposition 1 with knowing its own channel

statistics, that is, Σℓ = T ℓQℓT
†
ℓ, ℓ = 1, 2, . . . , L, where

Qℓ = diag (qℓ1, qℓ2, . . . , qℓnℓ
). Since the unitary matrices

are unimportant in (3), we can formulate the maximization

problem of mutual information over input covariances for UIU

channels as equivalently the power optimization problem over

IND channels as follows:

P ⋆ = argmax
P<0: tr(P )6n0

I (snr,P ,Q) (6)

yielding the average achievable rate in bits/s/Hz

R (snr,Q) = I (snr,P ⋆,Q) (7)

where Q = diag
(
inr1
n1

Q1, . . . ,
inrL
nL

QL

)

denotes the interfer-

ence power matrix and I (snr,P ,Q) is given in (8). Define

N =
∑L

ℓ=1 nℓ and inrtot =
∑L

ℓ=1 inrℓ as the total number

of interferers and the aggregate INR, respectively. When

inrtot ≫ 1 and N > nR, the MIMO system operates in an

interference-rich environment in which the effect of thermal

noise is negligible [35], [37].

III. MATHEMATICAL METHODOLOGY

In this section, we introduce the mathematical framework

necessary to derive the analytic expressions for MMSE and

SINR in the general structure of MIMO channels. We begin by

providing closed-form formulas for the detquotients of one and

two complex Gaussian matrices which will be used throughout

the paper.

I (snr,P ,Q) = E






log2 det



I +
snr

n0
H0PH

†
0

(

I +

L∑

ℓ=1

inrℓ

nℓ
HℓQℓH

†
ℓ

)−1









(8)
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Theorem 1 (Detquotient of Two Complex Gaussian Ma-

trices): For A ∈ C

m×m ≻ 0, B ∈ C

n×n < 0, and

C ∈ C

ℓ×ℓ < 0, the detquotient of the complex matrices

X ∼ Ñm,n and Y ∼ Ñm,ℓ, denoted by K1 (A,B,C), is

defined as

K1 (A,B,C)

, EX,Y







det
(

Im +AXBX†
)

det
(

Im +AXBX† +AYCY†
)






. (9)

Then, we have

K1 (A,B,C) = ζ (A,B)∆ (B,C,A)

−
m∑

k=1

n∑

ℓ=1

eig
2
k(A) eig2ℓ(B) ζ

(
A(k),B(ℓ)

)
∆
(

B(ℓ),C,A(k)
)

(10)

where ζ (A1,A2, . . . ,An) is the complete eigenpolynomial

[4, Definition 3]; A(k) and A(k) denote the kth constriction

and dilation matrices of A, respectively [4, Definition 1]; and

∆(B,C,A)

=

̺(C)
∑

u=1

τu(C)
∑

v=1

̺(B)
∑

p=1

τp(B)
∑

q=1

̺(A)
∑

i=1

τi(A)
∑

j=1

{
Xi,j(A)Xp,q(B)Xu,v(C)

eig
j
[i](A)

× J v
j,q

(

eig[p](B), eig[u](C), eig[i](A)
)}

(11)

for a > 0, b > 0, c > 0, and j ∈ Z+; where Xi,j(A) denotes

the (i, j)th characteristic coefficient of A [43, Definition 4];

and J v
j,q (a, b, c) for a 6= b is given in (12) and

J v
j,q (a, b, c) = cj2F0 (j, q + v;−ac) (13)

for a = b.
Proof: See Appendix A.

Theorem 2 (Detquotient of One Complex Gaussian Matrix):

For A ∈ Cm×m < 0 and B ∈ Cn×n < 0, the detquotient of

the complex Gaussian matrix X ∼ Ñm,n, is defined as

K2 (A,B; s) , EX







det
(

Im +AXBX†
)

det
(

Im + sA+AXBX†
)






. (14)

Then, we have

K2 (A,B; s) = ζ (A,B)Θ (A,B; s)

−
m∑

k=1

n∑

ℓ=1

eig
2
k(A) eig2ℓ(B) ζ

(
A(k),B(ℓ)

)
Θ
(

A(ℓ),B(ℓ); s
)

(15)

where

Θ(A,B; s) =

̺(A)
∑

i=1

τi(A)
∑

j=1

̺(B)
∑

p=1

τp(B)
∑

q=1

{

Xi,j(A)Xp,q(B)
(
seig[i](A) + 1

)j

× 2F0

(

j, q;−
eig[p](B) eig[i](A)

s eig[i](A) + 1

)}

. (16)

Proof: Using similar steps in the proof of Theorem 1, we

get the desired result.

Remark 1: For A = Im, the detquotient K2 (Im,B; s)
can be evaluated in determinantal form using the general-

ized Binet-Cauchy formulas [13], [17], [43]. However, this

approach cannot be applicable to A 6= Im since there is no

analytically tractable form of the joint eigenvalue distribution

for this case. The problem of finding the closed-form expres-

sion for K1 (A,B,C) is even more challenging because it

requires taking double expectations over two random matrices.

Berezin’s supermathematics enables to derive the analytical

solutions for K1 (A,B,C) and K2 (A,B; s) by resorting to

superintegrals, Grassmann integrals, and Fourier representa-

tions.

Corollary 1: For A = σIm, B = ρIn, and C = ̺Iℓ, the

detquotient in (10) boils down to (17) where

Tm,n (s) =

min{m,n}
∑

k=0

k!sk
(
m

k

)(
n

k

)

. (18)

Proof: It follows readily from Theorem 1 along with [4,

eq. (10)] and the characteristic coefficients of the identity

matrix [43, eq. (130)].

J v
j,q (a, b, c) =

q
∑

k=1

(

−
b

a

)q−k
(v + q − k − 1)!

(q − k)! (v − 1)!

(

1−
b

a

)k−v−q

cj2F0 (j, k;− ac)

+

(

−
b

a

)q v∑

i=1

(v + q − i− 1)!

(q − 1)! (v − i)!

(

1−
b

a

)i−v−q

cj2F0 (j, i;− bc) (12)

K1 (σIm, ρIn, ̺Iℓ) =

{

σ−m Tm,n (σρ)J l
m,n (ρ, ̺, σ)−mnσ1−mρ2 Tm−1,n−1 (σρ)J l

m+1,n+1 (ρ, ̺, σ) , ̺ 6= ρ

Tm,n (σ̺) 2F0 (m,n+ ℓ;−̺)−mnσ2̺2 Tm−1,n−1 (σ̺) 2F0 (m+ 1, n+ ℓ+ 1;−̺) , ̺ = ρ
(17)
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Corollary 2: For A = σIm and B = ρIn, the detquotient

in (15) boils down to

K2 (σIm, ρIn; s) =
Tm,n (σρ)

(sσ + 1)m
2F0

(

m,n;−
σρ

sσ + 1

)

−mnσ2ρ2 Tm−1,n−1 (σρ) 2F0

(

m+ 1, n+ 1;−
σρ

sσ + 1

)

.

(19)

Proof: It follows immediately from Theorem 2 along

with [4, eq. (10)] and (18).

IV. POWER ALLOCATION POLICIES

A. A Necessary and Sufficient Condition

In a noise-limited system, the capacity achieving power

allocation P ⋆
0 has been characterized for MIMO channels

with antenna correlation [14], [26]. We consider a MMSE

linear estimator at the receiver in the presence of cochannel

interference. Then, the SINR on the jth spatial stream with

power pj along with a direction of corresponding eigenvector

after MMSE detector can be expressed as

sinrj (pj) = pj
snr

n0
h
†
0jΨ

−1
j h0j (20)

where

Ψj = I +
snr

n0

∑

i6=j

pih0ih
†
0i +

L∑

ℓ=1

inrℓ

nℓ
HℓQℓH

†
ℓ. (21)

With a one-to-one relationship between the MMSE and SINR

[3], [49], we get the MMSE of the jth transmit signal at the

receiver as

mmsej (P ,Q) =
1

1 + sinrj (pj)

=
det (Ψj)

det
(

pj
snr
n0

h0jh
†
0j +Ψj

) . (22)

Using (20) and (22), we obtain an optimum condition for

input power allocation which maximizes the average mutual

information in (8) for the MIMO interference channels as

follows.

Theorem 3 (Optimum Condition for Input Power Alloca-

tion): Let

γj (P ,Q) =
1

pj
E {1−mmsej (P ,Q)} (23)

γth (P ,Q) = max
j:pj=0

E {sinrj (1)} . (24)

Then, a necessary and sufficient condition for the optimal

power allocation P ⋆ in the MIMO interference channels is

given by

γi (P
⋆,Q) = γj (P

⋆,Q) , ∀ pi > 0 and pj > 0 (25)

γi (P
⋆,Q) > γth (P

⋆,Q) , ∀ pi > 0 and pj = 0. (26)

Proof: See Appendix B.

Note that γi (P
⋆,Q) in (23) can be interpreted as the average

recovered signal level relative to the transmit power pj along

with the direction of the jth eigenvector, while γth (P
⋆,Q)

measures the maximum average signal level achieved by

allocating a unit power to the one of unused eigenvectors.

Theorem 3 reveals that the non-zero power should be allocated

to the directions providing higher recovered signal level than

the maximum average SINR with unit power allocation along

the unused eigenvectors. In addition, the transmit power should

be also allocated to satisfy normalized signal level achievable

on each eigenvector to be fairly balanced. Hence, γi (P
⋆,Q)

for all pj > 0 satisfies

γi (P
⋆,Q) =

1

n0

n0∑

k=1

pkγk (P
⋆,Q)

=
1

n0

n0∑

k=1

(1− E {mmsek (P
⋆,Q)}) . (27)

Substituting (27) into (25) and (26), yields that the optimum

condition in Theorem 3 has the same MMSE representation

for the noise-limited MIMO channel in [26]. It unveils that an

iterative algorithm for input power allocation in [26] can be

applied to the MIMO interference channels with an arbitrary

power distribution of cochannel interferers, each is spatially

correlated across receiving antennas.

B. Power Optimization Strategy

In order to find an optimum power allocation P ⋆, it is

crucial to evaluate (23) and (24). For the noise-limited MIMO

channels, the knowledge of fading channel distribution at the

transmitter has been exploited to evaluate the MMSE in [26].

The analytic expressions have been also derived for the MMSE

to reduce its computation burden in Rayleigh-faded MISO

channels [24]. In the following theorem, we investigate the

closed-form expressions for the average MMSE and SINR in

Theorem 3 over the MIMO interference channel with separable

correlation structure.

Theorem 4 (Average MMSE and SINR): We consider MIMO

interference channels where H̀k ∼ ÑnR,nk
(0,Σ,Φk) for

k = 0, . . . , L. Let ΛT,k and ΛR be the diagonal matrices

containing eigenvalues of Φk and Σ, respectively, and

W j =





n0⊕

i=1,i6=j

snr

n0
pi



⊕

(
L⊕

ℓ=1

inrℓ

nℓ
Qℓ

)

(28)

T j =





n0⊕

i=1,i6=j

(ΛT,0)i,i



⊕

(
L⊕

ℓ=1

ΛT,ℓ

)

(29)

Cj = T
1/2
j W jT

1/2
j . (30)

Then, for a given input power matrix P = diag (p1, . . ., pn0),
the analytic expressions for the expected values in (23) and

(24) are

E {mmsej (P ,Q)} = K1

(

Σ,Cj, pjeigj(ΛT,0)
snr

n0

)

(31)

E {sinrj (1)} = ζ (ΛR,Cj) Θ̇
(
Cj ,ΛR; eigj(ΛT,0)

)

−
m∑

k=1

n∑

ℓ=1

{

eig
2
k(Cj) eig

2
ℓ(ΛR) ζ

(

Cj(k),ΛR(ℓ)

)

× Θ̇
(

Cj
(k),ΛR

(ℓ); eigj(ΛT,0)
)}

(32)
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where

Θ̇ (A,B; s)

=

̺(B)
∑

i=1

τi(B)
∑

j=1

̺(A)
∑

p=1

τp(A)
∑

q=1

{
Xi,j(B)Xp,q(A) s eig[i](B)jsnr

n0

× 2F0

(

j + 1, q;− eig[p](A)eig[i](B)
)}

. (33)

Proof: The analytical solution for E {mmsej (P ,Q)}
in (31) follows immediately from Theorem 1. In order to

find the solution for E {sinrj (1)}, we derive the moment

generating function of sinrj (1) using (20) as

φsinrj(1) (s)

= Eh0j ,H

{

exp

(

−s
snr

n0
h
†
0j

(

I +HW jH
†
)−1

h0j

)}

= EH







det
(

I +HW jH
†
)

det
(

I + s snrn0
eigj(ΛT,0)Σ +HW jH

†
)







= K2

(

Σ,Cj ; s
snr

n0
eigj(ΛT,0)

)

(34)

where H = [H0j H1 . . . HL]. Examining the first order

derivative of φsinrj(1) (s) with respect to s, we arrive at the

desired result (32) at s = 0.

Remark 2: It is worth noting that the joint transmit-receive

correlation model is not subsumed by our framework. The

main difficulty arises due to the absence of a method to

decouple the matrix Hk in (4) into the product of an i.i.d.

zero mean Gaussian matrix and the nonnegative semidefinite

matrices. To circumvent the difficulty, the large random matrix

theory is applied as the numbers of antennas tend to infinity

in the next section.

Corollary 3: For snrn0
= inr1

n1
= . . . = inrL

nL
= γ and spatially

uncorrelated across receiving antennas, we have Qℓ = Inℓ

and P = In0 . Then, the average MMSE and SINR reduce to

(35) and (36), respectively.

Proof: It follows immediately from Theorem 4, (17) and

(19).

Invoking [26, Algorithm 1] and Theorem 4, we introduce a

procedure to find the optimum power allocation P ⋆ maximiz-

ing the ergodic mutual information in Algorithm 1.

Remark 3: If pj is initialized to zero, then it remains at

zero for all future iterations. The convergence of the algorithm

is determined by the convergence of the step of computing

p
(n)
j , which is in turn a fixed-point iteration procedure. Since

the functions defining fixed-point equations for pj are con-

tinuous, a sufficient condition for such fixed-point iterations

Algorithm 1: Power Allocation Algorithm

Initialize: Power matrix P (0) such that tr
(

P (0)
)

> 0
Convergence thresholds ǫ ∈ R++ and ǫ′ ∈ R++

p
(0)
j to be the arbitrary large number for j ∈ {1, . . . , n0}

1 for n = 1, 2, . . . do

2 for j = 1 to n0 do

3 p
(n)
j =

1−E

{

mmsej

(

P (n−1),Q
)}

1
n0

∑n0
k=1(1−E{mmsek(P (n−1),Q)})

4 end

5 if maxj

∣

∣

∣
p
(n)
j

− p
(n−1)
j

∣

∣

∣
< ǫ then P∞ = P (n)

6 if E

{

sinr
(∞)
j (1)

}

≤
1
n0

∑n0
k=1

(

1− E

{

mmsek

(

P (∞),Q
)})

for j such

that p
(∞)
j

< ǫ′ then P ⋆ = P (∞);

7 break ;

8 else p
(0)
j = 0 for j = argmink E

{

sinr
(∞)
k

(1)
}

;

9 end

10 end

to converge is that the functions are Lipschitz with Lipschitz

constant less than 1. The empirical verification of the sufficient

condition is available for several special cases of the MIMO

interference channel in [26].

Remark 4: Recalling the noise-limited MIMO channel [26],

we remark that some observations for the uniform power

allocation in the presence of cochannel interference as: i)

the isotropic input achieves the maximum rate in (7) if the

columns of H0 are marginally identically distributed or the

channel gain matrix Ω0 is column-regular [14, Definition 4]

in a Rayleigh fading channel; ii) In a regime of large numbers

of antennas, if the gain matrix Ω0 is asymptotic column-

regular [14], then the asymptotic capacity-achieving power

input is isotropic regardless of the marginal distribution of

H0; and iii) For the Rayleigh-faded channels with separable

correlations, the isotropic input is optimal if the transmit

antennas are uncorrelated.

V. ASYMPTOTIC CAPACITY

Using the power allocation algorithm developed in Sec. IV,

it is now possible to characterize the impact of correlation on

the ergodic capacity of MIMO channels in the presence of

cochannel interference when the channel knowledge of long-

term statistics is available at the transmitter. For a channel

matrix H0 whose entries are arbitrarily distributed with uni-

formly bounded variances associated with the gain matrix Ω0

with ratio β = n0/nR, the gain profile

G
(nR)
0 : [0, 1)× [0, β) → R (37)

E {mmsej (P ,Q)} = TnR,N+n0−1 (γ) 2F0 (nR, N + n0;−γ)

− nR (N + n0 − 1)γ2TnR−1,N+n0−2 (γ) 2F0 (nR + 1, N + n0 + 1;−γ) (35)

E {sinrj (1)} = nRγ TnR,N+n0−1 (γ) 2F0 (nR + 1, N + n0 − 1;− γ)

− nR (nR + 1) (N + n0 − 1) γ3 TnR−1,N+n0−2 (γ) 2F0 (nR + 2, N + n0;−γ) (36)
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maps the entries of Ω0 onto a two-dimensional piece-wise

constant function such that

G
(nR)
0 (r, t) , (Ω0)i,j ,

i− 1

nR
6 r <

i

nR
,
j − 1

nR
6 t <

j

nR
.

(38)

The variables r and t can be interpreted as the normalized

receive and transmit antenna indices taking values in [0, 1)
and [0, β), respectively. Similarly, associated with the power

matrix P with uniformly bounded diagonal entries, we define

an input power profile given by

P(nR) (t) , pj ,
j − 1

nR
6 t <

j

nR
. (39)

We assume that, in the regime of large numbers of antennas,

the gain profile G (r, t) and power profile P (t) converge

uniformly to bounded functions

G (r, t) , lim
nR→∞

G(nR) (r, t) (40)

P (t) , lim
nR→∞

P(nR) (t) (41)

referred to as an asymptotic gain profile and an asymptotic

power profile, respectively.

Theorem 5 (Asymptotic Mutual Information): Let Hk, k =
0, . . . , L be INDs which satisfy nR → ∞, n0

nR
= β ∈ (0,∞)

and N
nR

= βI ∈ (0,∞). Let G0 (r, t), GI (r, t), and G (r, t)
be the asymptotic gain profiles associated with Ω0, ΩI =
[Ω1 . . . ΩL], and Ω = [Ω0 ΩI], respectively, and P0 (t),
PI (t), and P (t) be the asymptotic power profiles associated

with P , P 2 =
⊕L

ℓ=1
inrℓ
snr

n0

nℓ
Qℓ, and P 1 = P⋆ ⊕ P 2,

respectively. Then, the asymptotic mutual information per

receive antenna, denoted by I⋆ (snr,P ⋆,Q), is given in (42)

where BI (r, snr) and B (r, snr), satisfying the equations

BI (r, snr)

=
1

1 + snrβI EtI

{
GI(r,tI)PI(tI)

β+snrErI
{GI(rI,tI)PI(tI)BI(rI,snr)|tI}

} (43)

B (r, snr)

=
1

1 + snr (β + βI)Et

{
G(r,t)P(t)

β+snrEr{G(r,t)P(t)B(r,snr)|t}

} (44)

and the expectations are over r, t0, tI, and t, independent and

uniform in [0, 1], [0, β], [0, βI] and [0, β + βI], respectively.

Proof: The average mutual information in (8) can be

manipulated into

I (snr,P ⋆,Q)

= E

{

log2 det

[

I +
snr

n0
H0P

⋆H
†
0 +

L∑

ℓ=1

inrℓ

nℓ
HℓQℓH

†
ℓ

]}

− E

{

log2 det

[

I +
L∑

ℓ=1

inrℓ

nℓ
HℓQℓH

†
ℓ

]}

. (45)

Let us define block matrices P 2 =
⊕L

ℓ=1
inrℓ
snr

n0

nℓ
Qℓ and P 1 =

P⋆ ⊕ P 2. Then, the average mutual information in (45) can

be further simplified into

I (snr,P ⋆,Q) = E

{

log2 det

[

I +
snr

n0
HP 1H

†
]}

︸ ︷︷ ︸

,I1(snr,P ⋆,Q)

− E

{

log2 det

[

I +
snr

n0
HIP 2H

†
I

]}

︸ ︷︷ ︸

, I2(snr,Q)

. (46)

The term I1 (snr,P
⋆,Q) can be interpreted as the ergodic

capacity of the cooperative network where the receiver can

decode all the desired and interfering signals, while the term

I2 (snr,Q) is the ergodic capacity of the channel between the

interferers and receiver. The difference between both terms

gives the ergodic capacity of the desired MIMO channel in

the presence of cochannel interference. Since

Var

{(

HP
1/2
1

)

i,j
n
−1/2
0

}

=
(Ω)i,j p1j

nRβ
, (47)

the asymptotic variance profile associated with 1√
n0
HP

1/2
1

and 1√
n0

HIP
1/2
2 is given by [14, Theorem 2.53]

v (r, t) , lim
nR→∞

nR Var

{(

HP
1/2
1

)

i,j
n
−1/2
0

}

=
G (r, t)P (t)

β
(48)

vI (r, t) , lim
nR→∞

nR Var

{(

HIP
1/2
2

)

i,j
n
−1/2
0

}

=
GI (r, t)PI (t)

β
. (49)

After some manipulations, we get (50) and (51), where

BI (r, snr) and B (r, snr) are the unique solutions to the

fixed-point equations in (43) and (44), respectively. Finally,

substituting (50) and (51) into (46), we complete the proof.

I⋆ (snr,P ⋆,Q)
a.s.
→ βEt0

{

log2

(

1 +
snr

β
Er {G0 (r, t0)P0 (t0)B (r, snr) |t0}

)}

+ βIEtI

{

log2

(
β + snrEr {GI (r, tI)PI (tI)B (r, snr) |tI}

β + snrEr {GI (r, tI)PI (tI)BI (r, snr) |tI}

)}

+ E

{

log2
BI (r, snr)

B (r, snr)

}

+ (E {B (r, snr)− BI (r, snr)}) log2 e (42)
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The key mathematical tool used in Theorem 5 is Girko’s

theorem [50, Corollary 10.1.2] along with the Shannon trans-

form [51]. Theorem 5 provides the asymptotic capacity for a

very general case when the fading has zero mean and arbitrary

distributions.2

Remark 5: Since the asymptotic normalized ergodic capac-

ity in (42) is difficult to compute, we can approximate all

the involved functions in (42), (43), and (44) with linear-

piecewise curves [19]. By replacing B (r, snr) = Bi (snr) and

BI (r, snr) = BIi (snr) for all i−1
nR

≤ r < i
nR

, and solving the

expectation operations in (42), (43) and (44), the capacity of an

IND channel for arbitrary numbers of antennas as a functional

of the discrete set of values of these functions is approximated

by

I⋆ (snr,P ⋆,Q)

≈
1

nR

n0∑

k=1

log2

(

1 +
snr

βnR

nR∑

i=1

pk (Ω0)i,j Bi (snr)

)

+
1

nR

N∑

j=1

log2

(

βnR + snr
∑nR

i=1 p2j (ΩI)i,j Bi (snr)

βnR + snr
∑nR

i=1 p2j (ΩI)i,j BIi (snr)

)

−
1

nR

nR∑

i=1

log2

(
Bi (snr)

BIi (snr)

)

+
1

nR

nR∑

i=1

(Bi (snr)− BIi (snr)) log2 e (52)

where BIj (snr), for j ∈ {1, . . . , nR}, and Bi (snr), for i ∈
{1, . . . , nR}, are satisfying the equations

BIj (snr)

=

(

1 +
snr

nR

N∑

k=1

(ΩI)j,k p2k

β + snr
nR

∑nR

ℓ=1 (ΩI)ℓ,k p2kBIℓ (snr)

)−1

,

(53)

Bi (snr)

=

(

1 +
snr

nR

n0+N∑

k=1

(Ω)i,k p1k

β + snr
nR

∑nR

ℓ=1 (Ω)ℓ,k p1kBℓ (snr)

)−1

.

(54)

Although the functions Bj (snr) and BIj (snr) do not possess

closed-form representations, they easily can be solved by

2Note that the channel matrices consist of i.i.d. elements with zero mean
and unit variance, and the number of probe transmit antennas is equal to the
number of transmit antennas at each interferer, Theorem 5 can be reduced to
the result derived in [35].

fixed-point iteration in 2nR variables which converge very

quickly to any desired accuracy level.

VI. NUMERICAL RESULTS

In this section, we provide some numerical examples to

illustrate our analysis. Specifically, we use the nth-order

positive-definite exponential correlation matrix Φ(exp)
n (ρ) =

(
ρ|i−j|)

i,j=1,2,...,n
with a correlation coefficient ρ ∈ [0, 1). In

all examples associated with the exponential correlation, we

set Φℓ = Φ(exp)
nℓ

(ρℓ), ℓ = 0, . . . , L, and Σ = Φ(exp)
nR

(ρR). To

characterize the effect of interference heterogeneity, we use

the intraclass power profile matrix

Qintra (η, inrtot) =
inrtot

N









1 η η · · · η
η 1 η · · · η
.
..

.

..
.
..

. . .
.
..

η η η · · · 1









N×N

, (55)

for η ∈ [0, 1]. The intraclass power profile implies a interfer-

ence network consists of one dominant strong interferer and

N−1 relatively weak equal-power interferers. For example, if

the receiver in a femtocell is affected by one strong interferer

from the macrocell and two weak interferers from the other

femtocell, we can set Qintra (0.5, 3inr) which implies that

inr1 = 2inr, inr2 = 0.5inr, and inr3 = 0.5inr. Note that the

interference network power is homogeneous when η = 0 and

its heterogeneity increases as η tends to 1.

A. Verification

We first verify our analysis on the average MMSE and

SINR derived in Theorem 4. Figs. 1(a) and Figs. 1(b) show

the average MMSE and SINR for the first parallel stream of

the (4, [2, 3], nR)-MIMO interference channel as a function of

snr at inrtot = 10 dB when nR = 2, 3, 4. The corresponding

input power matrices are set to P = diag (1.8, 1.2, 0.7, 0.3)
and Q = Qintra (0.5, inrtot), respectively. We set the relevant

correlation matrices to Σ = Φ(exp)
nR

(0.2), Φ0 = Φ(exp)
n0

(0.5),

Φ1 = Φ(exp)
n1

(0.1), and Φ2 = Φ(exp)
n2

(0.2), respectively. It can

be seen that theoretical results are perfectly matched with the

simulation results, which verify the accuracy of our analysis.

B. Asymptotic Ergodic Capacity

The effectiveness of power allocation policies can be as-

certained by referring to Fig. 2 where the average mutual

information I (snr,P ,Q) for the (4, [2, 3], 4)-MIMO interfer-

ence channel is depicted as a function of snr. In this figure,

1

nR
I1 (snr,P

⋆,Q)
a.s.
→ (β + βI)Et

{

log2

(

1 +
snr

β
Er {G (r, t)P (t)B (r, snr) |t}

)}

− E {log2 B (r, snr)}+ (E {B (r, snr)− 1}) log2 e (50)

1

nR
I2 (snr,Q)

a.s.
→βI EtI

{

log2

(

1 +
snr

β
ErI {GI (rI, tI)PI (tI)BI (rI, snr) |tI}

)}

− E {log2 BI (rI, snr)}+ (E {BI (rI, snr)− 1}) log2 e (51)
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Fig. 1. (a) Average MMSE E {mmse1 (P ,Q)} and (b) average SINR
E {sinr1 (1)} in dB for the first parallel streams of the (4, [2, 3], nR)-
MIMO interference channel as a function of snr at inrtot = 10 dB with
Q = Qintra (0.5, inrtot) when nR = 2, 3, 4.

the correlation matrices and their coefficients are the same

as in Fig. 1. It is obvious that the input optimization gives

higher achievable rate than that of isotropic input, especially,

at low-SNR regime. However, the isotropic input approaches

the maximum achievable rate as SNR increases. We also

plot the achievable rate obtained by using beamforming input

along with the best eigenvector direction. It can be seen that,

the beamforming input gives a good performance in low-

SNR regimes. To further ascertain the efficacy of signaling

strategy, we plot the average mutual information I (snr,P ,Q)
of the (2, [1, 1, 1], 2)-MIMO interference channel in Fig. 3 as

a function of the correlation coefficient ρ at snr = 5 dB with

Σ = Φ(exp)
nR

(ρ), Φ0 = Φ(exp)
n0

(ρ), and Q = Qintra (0, inrtot)
when inrtot = 5 dB and 10 dB. We can see that the statistical

channel knowledge can be exploited to boost the achievable

rate when the transmit antennas are highly correlated. We
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Fig. 2. Average mutual information I (snr,P ,Q) of the (4, [2, 3], 4)-
MIMO interference channel archived by different input schemes: optimal
input, isotropic input, and beamforming input at inrtot = 10 dB with
Q = Qintra (0.5, inrtot).
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Fig. 3. Average mutual information I (snr,P ,Q) of the (2, [1, 1, 1], 2)-
MIMO interference channel as a function of the correlation coefficient ρ

at snr = 5 dB with Σ = Φ
(exp)
nR

(ρ), Φ0 = Φ
(exp)
n0 (ρ), and Q =

Qintra (0, inrtot) when inrtot = 5 dB and 10 dB.

can also observe that the antenna correlation can improve the

capacity of MIMO interference channels, especially at the low

SNR regime.

C. Effect of Interference Power Profile

Fig. 4 demonstrates the effect of interference power profile

on the ergodic capacity, where the approximate ergodic capac-

ity as a function of inrtot is plotted for the intraclass power

profile Qintra (η, inrtot). In this figure, we set snr = 15 dB,

nR = 2, n0 = 3, N = 3, P ⋆ = In0 , and η = 0 (equal-

power interferers), 0.5, 0.7, 0.8, 0.9, 0.95, 1 (dominant strong

interferer). All the fading channels are uniformly distributed
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Fig. 4. Ergodic capacity as a function of inrtot at snr = 15 dB with nR = 2,
n0 = 3, N = 3, P ⋆ = In0 , Q = Qintra (η, inrtot) when η = 0 (equal-
power interferers), 0.5, 0.7, 0.8, 0.9, 0.95, 1 (dominant strong interferer).

around zero with the all-one matrix Ω0, and

ΩI =

[
3.6 0.4 0.5
1 0.3 0.2

]

.

We can observe that the homogeneity of the interference

power profile gives less severe interfering effect at low-INR

regimes, while the more heterogeneous interference power

profile results in the less severe interfering effect at high-

INR regimes in terms of ergodic capacity because it helps to

increase the ability of the receiver to mitigate the interfering

signals. We can also see that the approximate ergodic capacity

converges to a floor given by the ergodic capacity of a single

user n0 × nR − 1 MIMO system (the red circle on the same

figure) for η = 1. This can be attributed to the fact that for

small value of η, the receiver uses one degree of freedom to

mitigate the interfering signal and uses the remain ones for

boosting the data rate, and hence it can be seen as a single

user n0 × nR − 1 MIMO system.

D. Achievable Region

Fig. 5 shows the achievable region of (SIR, SNR) for the

desired ergodic capacity per receive antenna C = 3 bits/s/Hz

of the polarization system when (a) nR = 2, n0 = 3, and

N = 2, 3, 4,∞, (b) n0 = 2, N = 2, and nR = 2, 3, 4. In this

example, we use the polarization gain matrix model as [14]

Ω
polar
n×m (X ) ,

2

1 + X













1 X 1 · · · X

X 1 X · · · 1
1 X 1 · · · X

...
...

...
. . .

...
X 1 X · · · 1













.

We assume that the fading has independent real and imaginary

parts uniformly distributed around zero with the relevant

channel gain matrices Ω0 = Ω
polar
nR×n0

(0.5) and ΩI =

Ω
polar
nR×N (0.3), respectively. In Fig. 5(a), each curve corre-

sponds to the required aggregate SIR as a function of snr, at
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Fig. 5. Achievable region of (SNR,SIR) for the desired ergodic capacity per
receive antenna C = 3 bits/s/Hz of the polarization system with isotropic
inputs for both the probe transmitter and the interferers when (a) nR = 2,
n0 = 3, and N = 2, 3, 4,∞, (b) n0 = 2, N = 2, and nR = 2, 3, 4.

which the desired normalized ergodic capacity C = 3 bits/s/Hz

is attained for the total number of interferers. For example,

at the average received SNR of 20 dB, the MMSE receiver

requires at least the values of the aggregate SIR of about 7 dB,

8.5 dB, 9 dB, and 10 dB for N = 2, 3, 4 and ∞, respectively,

while there is no SIR value achieving the desired normalized

ergodic capacity for SNRs below 11 dB. As the SNR tends

to infinity, the required SIR approaches 5.5 dB, 7.7 dB, 8.5

dB and 9.5 dB for N = 2, 3, 4 and ∞, respectively, which are

same as the corresponding SINRs required in the interference-

limited regime. The effect of the number of receiving antenna

on the achievable region of (SIR, SNR) is further ascertained

in Fig. 5(b). As can be seen from the figure that for nR = 2,

when snr grows large, the SIR is saturated, and it can not be

improved even when snr tends to infinity. This is due to the
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lack of number of degrees of freedom such that the MMSE

receiver can completely suppress the interference, and thus

the ergodic capacity is mostly determined by the SIR. When

nR = 3, the number of receive antennas exceeds the number

of the probe transmit antennas, but smaller than the number

of probe transmit antennas plus the interferer’s antennas.

Therefore, the receiver must compromise between mitigating

the interfering effect and boosting the data rate. For the case

nR = 4, the number of receive antennas exceeds the number

of transmit plus interferers’s antennas, thus the receiver can

simultaneously totally suppress the outside interference and

detect the desired signal. Therefore, the normalized ergodic

capacity is independent of the SIR as the SNR grows large and

is determined only by the SNR. For example, at the average

received SNR of 24 dB, the MMSE receiver required at least

the values of the aggregate SIR of about 7 dB and 2.6 dB

for nR = 2 and nR = 3, respectively, while we can attain

higher desired capacity for any values of the aggregate SIR

for nR = 4.

VII. CONCLUSION

Using key results of Berezin’s supermathematics and large

random matrix theory, we developed a framework to charac-

terize the effects of cochannel interference and antenna cor-

relation on the capacity in of MIMO channels with multiuser

interference. In particular, we studied the optimal transmission

strategy and the ergodic capacity of a MIMO system, taking

into account the heterogeneity of interferer powers and spatial

fading correlation falling inside the UIU model. We character-

ized the optimal power allocation in terms of a necessary and

sufficient condition that encompasses the noise limited case.

As a result, we provided a simple but efficient algorithm to

find the optimum power allocation for a covariance feedback

system. To reduce the computational complexity, we used

Berezin’s supermathematics to derive the analytical solutions

for the average MMSE and SINR on the linear estimations of

the parallel spatial streams. We derived the asymptotic capacity

per receive antenna of UIU MIMO channels as the numbers of

antennas grow large. We showed that the asymptotic analysis

gives a very good accuracy and it only required to solve the

fixed point equations of 2nR variables which converge very

quickly to any target of accuracy level. Finally, in terms of

ergodic capacity, it is more favorable to have a dominant strong

interferer rather than to have equal-power interferers as INR

increases, while equal-power interferers are more preferable at

low INR regimes.

APPENDIX A

PROOF OF THEOREM 1

Let ggg1 ∈ G

m, y1 ∈ C

m, ggg2 ∈ G

n, y2 ∈ C

n, ggg3 ∈ G

ℓ,

y3 ∈ Cℓ, and

sss1 =

[
ggg1
y1

]

, sss2 =

[
ggg2
y2

]

, sss3 =

[
ggg3
y3

]

. (56)

Then, using basic formulas of supermathematics and [43,

Lemma 2], the detquotient in (9) can be decoupled in terms

of superintegrals as (57). Exploiting the Fourier representation

of the delta function and introducing an integral over the

Grassmann variables h1 and h2, we decouple the exponents in

(57) in a similar way as in [4]. Note that alternative expression

for K1 (A,B,C) can be obtained from the results derived in

[16] using the replica method. Next, we combine the results

and evaluate the integral first over the anticommuting vectors,

and then over the commuting ones, we obtain (58) where

V 1 = A (Im − ω1A)
−1

A (Im +  (ω2 + ω3)A)
−1

, (59)

V 2 = B (In + t1B)
−1

B (In + t2B)
−1

. (60)

For a Grassmann variable g ∈ G and a complex matrix Ω ∈
C

m×m, we have [4, eq. (43)]

det
(
Im + gΩ

)−1
=

m∏

i=1

(
1 + g eigi(Ω)

)−1
(61)

from which the integral I1 can be evaluated as

I1 = 1− tr (V 1) tr (V 2) . (62)

Hence, we get

K1 (A,B,C) = L1 (A,B,C)− L2 (A,B,C) (63)

where L1 (A,B,C) and L2 (A,B,C) are given in (64) and

(65), respectively.

K1 (A,B,C) =

∫∫∫

exp
(

ggg†
1
Aggg

1
ggg†
2
Bggg

2
+ y

†
1Aggg

1
ggg†
2
By2 − ggg†

1
Ay1y

†
2Bggg

2
− y

†
1Ay1y

†
2By2

)

× exp
(

−y
†
1Ay1y

†
3Cy3

)

exp
(

−sss†1sss1 − sss
†
2sss2 − sss

†
3sss3

)

dsss†3dsss3dsss
†
2dsss2dsss

†
1dsss1 (57)

K1 (A,B,C) =

(
1

2π

)3 ∫ ∞

−∞
· · ·

∫ ∞

−∞

{
,I1

︷ ︸︸ ︷∫∫

e−(h∗1 h1+h∗2 h2)

det(Im+h2h1V 1) det
(
In+h∗

2 h∗

1V 2

)dh∗
1dh1dh∗

2dh2

× e(ω1t1+ω2t2+ω3t3) det(Im−ω1A) det(In+t1B)
det(Im+(ω2+ω3)A) det(In+t2B) det(Il+t3C)
︸ ︷︷ ︸

, f(ω1,ω2,ω3,t1,t2,t3)

}

dω1dt1dω2dt2dω3dt3 (58)
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L1 (A,B,C) =

(
1

2π

)3 ∫ ∞

−∞
· · ·

∫ ∞

−∞
f (ω1, ω2, ω3, t1, t2, t3) dω1dt1dω2dt2dω3dt3 (64)

L2 (A,B,C) =

(
1

2π

)3 ∫ ∞

−∞
· · ·

∫ ∞

−∞
f (ω1, ω2, ω3, t1, t2, t3) tr (V 1) tr (V 2) dω1dt1dω2dt2dω3dt3 (65)

1) Evaluation of L1 (A,B,C): Let

L1,1

=

∫ ∞

−∞
F
−1
(ω1)

{det (Im − ω1A)} (t1) det (In + t1B) dt1

(66)

L1,2

=

∫ ∞

−∞

∫ ∞

−∞
F
−1
(ω2, ω3)

{

det (Im +  (ω2 + ω3)A)
−1
}

(t2, t3)

× det (In + t2B)−1 det (I l + t3C)−1 dt2dt3. (67)

Then, L1 (A,B,C) in (64) can be written as L1 (A,B,C) =
L1,1L1,2. Expanding det (In + t1B) with the eigenpolynomi-

als and using [4, Lemma 1-ii)], we obtain L1,1 = ζ (A,B).
Again using the characteristic coefficients expansion, we ob-

tain

F
−1
(ω2, ω3)

{

det (Im +  (ω2 + ω3)A)−1
}

(t2, t3)

=
1

2π

̺(A)
∑

i=1

τi(A)
∑

j=1

{

Xi,j(A)

×

∫ ∞

−∞

tj−1
2

Γ(j)eigj[i](A)
e
ω3t3−

(
1

eig
[i]

(A)
+ω3

)
t2
u (t2) dω3

}

=

̺(A)
∑

i=1

τi(A)
∑

j=1

Xi,j(A)

Γ(j)eigj[i](A)
e

−t2
eig

[i]
(A)

tj−1
2 u (t2) δ (t3 − t2)

(68)

where the last equality follows the integral identity [42,

eq. (3.382.7)]:

∫ ∞

−∞
(a+ ω)

−ν
eωtdω =

2πtν−1

Γ(ν)
e−atu (t) (69)

for ℜ (a) > 0,ℜ (ν) > 0. Expanding det (In + t2B)
−1

and

det (I l + t3C)
−1

with the characteristic coefficients, along

with (68), we obtain (70), where the last equality follows from

the integral

J v
j,q (a, b, c)

,
1

(j − 1)!

∫ ∞

0

(1 + ax)
−q

(1 + bx)
−v

xj−1e−
x
c dx (71)

for a > 0, b > 0, c > 0, and j ∈ Z+. For a 6= b, in order

to find the closed-form expression for J v
j,q (a, b, c), we first

decompose the term (1 + ax)
−q

(1 + bx)
−v

as

(1 + ax)
−q

(1 + bx)
−v

=

q
∑

k=1

(

−
b

a

)q−k
(v + q − k − 1)!

(q − k)! (v − 1)!

(

1−
b

a

)k−v−q

(1 + ax)
−k

+

(

−
b

a

)q v∑

i=1

(v + q − i− 1)!

(q − 1)! (v − i)!

(

1−
b

a

)i−v−q

(1 + bx)
−i

.

(72)

Then, substituting (72) into (71), we arrive at the desired result

in (12), in which we use the integral identity:

1

(n− 1)!

∫ ∞

0

(1 + ax)
µ−1

xn−1e−x/bdx

= bn2F0 (n,−µ+ 1 ;−ab) (73)

for a > 0, b > 0, and n ∈ Z+ [13, Appendix A]. For a = b,
we get J v

j,q (a, b, c) = cj2F0 (j, q + v ;−ac). Therefore, we

arrive at the desired result

L1 (A,B,C) = ζ (A,B)∆ (B,C,A) . (74)

L1,2 =

̺(B)
∑

p=1

τp(B)
∑

q=1

̺(C)
∑

u=1

τu(C)
∑

v=1

̺(A)
∑

i=1

τi(A)
∑

j=1

{

Xi,j(A)Xp,q(B)Xu,v(C)

Γ (j) eigj[i](A)

×

∫ ∞

−∞

∫ ∞

−∞

(

1 + t2eig[p](B)
)−q (

1 + t3eig[u](C)
)−v

e
−t2

eig
[i]

(A)
tj−1
2 u (t2) δ (t3 − t2) dt2dt3

}

=

̺(B)
∑

p=1

τp(B)
∑

q=1

̺(C)
∑

u=1

τu(C)
∑

v=1

̺(A)
∑

i=1

τi(A)
∑

j=1

Xi,j(A)Xp,q(B)Xu,v(C)

Γ (j) eigj[i](A)

∫ ∞

0

(

1 + teig[p](B)
)−q (

1 + teig[u](C)
)−v

e
−t

eig
[i]

(A)
tj−1dt

= ∆(B,C,A) (70)
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2) Evaluation of L2 (A,B,C): Let

f1 (ω1, t2, t3)

= F
−1
(ω2, ω3)

{
tr (V 1)

det (Im +  (ω2 + ω3)A)

}

(t2, t3) (75)

f2 (t1, t2, t3)

= F
−1
(ω1)

{det (Im − ω1A) f1 (ω1, t2, t3)} (t1) (76)

f3 (t1)

=

∫ ∞

−∞

∫ ∞

−∞

tr (V 2) f2 (t1, t2, t3)

det (In + t2B)
−1

det (I l + t3C)
−1 dt2dt3.

(77)

Then, we can write L2 (A,B,C) as

L2 (A,B,C) =

∫ ∞

−∞
det (In + t1B) f3 (t1) dt1. (78)

Since

tr (V 1) =

m∑

k=1

eig
2
k(A)

(1− ω1eigk(A)) (1 +  (ω2 + ω3) eigk(A))
,

we have

f1 (ω1, t2, t3)

=

m∑

k=1

̺(A)
∑

i=1

τi(A(k))
∑

j=1

{
Xi,j

(

A(k)
)

eig
2
k(A)tj−1

2

Γ(j)eigj[i](A) (1− ω1eigk(A))

× e
−t2

eig
[i]

(A)
u (t2) δ (t3 − t2)

}

. (79)

From (79), f2 (t1, t2, t3) in (76) is given by

f2 (t1, t2, t3)

=

m∑

k=1

F
−1
(ω1)

{
det
(
Im − ω1A(k)

)}
(t1)

×

̺(A)
∑

i=1

τi(A(k))
∑

j=1

{
Xi,j

(

A(k)
)

eig
2
k(A)tj−1

2

Γ(j)eigj[i](A)

× e
−t2

eig
[i]

(A)
u (t2) δ (t3 − t2)

}

. (80)

Again, from (70), (71), (80), and [4, Lemma 1-ii)] along with

(81), we obtain (82). Finally, we get (83), from which we

complete the proof.

APPENDIX B

PROOF OF THEOREM 3

We sketch the proof as follows. Using a perturbing transmit

power ǫ ∈ R+, we first parameterize the average achievable

rate as a function of ǫ and exploit its derivative with respect

to ǫ to show the necessary condition for the optimal power

allocation. We then prove the sufficiency of the necessary

condition by evaluating the difference of the ergodic mutual

information between the interference MIMO using the input

power matrix satisfying necessary condition and an arbitrary

input power matrix.

A. Necessity for Optimal Power Allocation

Let us reallocate the perturbing power ǫ from the ith
transmit power pi to the jth transmit power pj for the power

det (In + t2B)
−1

det (I l + t2C)
−1

tr (V 2)

=

n∑

l=1

̺(B)
∑

p=1

τp(B(l))
∑

q=1

̺(C)
∑

u=1

τu(C)
∑

v=1

Xp,q

(

B(l)
)

Xu,v(C) eig2l (B)

(1 + t1eigl(B))
(

1 + t2eig[p](B)
)q (

1 + t3eig[p](C)
)v (81)

f3 (t1) =

m∑

k=1

n∑

l=1

̺(B)
∑

p=1

τp(B(l))
∑

q=1

̺(C)
∑

u=1

τu(C)
∑

v=1

̺(A)
∑

i=1

τi(A(k))
∑

j=1

{

Xi,j(A(k))Xp,q(B(l))Xu,v(C)eig2l(B)eig2k(A)

eig
j

[i]
(A)(1+t1eigl(B))Γ(j)

×
m−1∑

k1=0

(−1)
k1 ek1

(
A(k1)

)
δ(k1) (t1)

∫ ∞

0

(

1 + teig[p](B)
)−q (

1 + teig[u](C)
)−v

e
−t

eig
[i]

(A)
tj−1dt

}

(82)

L2 (A,B,C) =

m∑

k=1

n∑

l=1

eig
2
k(A) eig2l (B)∆

(

B(l),C,A(k)
)m−1∑

k1=0

(−1)
k1 ek1

(
A(k)

)
∫ ∞

−∞
det
(
In + t1B(l)

)
δ(k1) (t1) dt1

︸ ︷︷ ︸

=ζ(A(k),B(l))
(83)
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allocation matrix P = diag (p1, p2, . . . , pn0), leading to

P ǫ = diag (p1, . . . , pi − ǫ, . . . , pj + ǫ, . . . , pn0) (84)

for 0 6 ǫ 6 pi. The parameterized achievable rate can be then

written as

I (snr,P ǫ,Q) = E

{

log2 det

[

pjsnrh0jh
†
0j

+ ǫ snr
(

h0jh
†
0j − h0ih

†
0i

)

+Ψj

]}

+ const. (85)

Invoking [13, Lemma 1] and the dominated convergence

theorem for interchanging the order of differentiation and

integration along with the fact that the argument matrix of

the determinant in (85) is positive definite, it is clear that

∂2I (snr,P ǫ,Q) /∂ǫ2 6 0 and hence, I (snr,P ǫ,Q) as a

function of the perturbation ǫ is concave in ǫ ∈ [0, pi]. There-

fore, it is sufficient to examine [∂I (snr,P ǫ,Q) /∂ǫ]
∣
∣
ǫ=0

6 0
in order to obtain a necessary condition for optimal power

allocation. Specifically, we have (86). Since

tr

((

pj
snr

n0
h0jh

†
0j +Ψj

)−1

h0jh
†
0j

)

= tr

((

I + pj
snr

n0
h0jh

†
0jΨ

−1
j

)−1

h0jh
†
0jΨ

−1
j

)

=
1−mmsej (P ,Q)

pj
snr
n0

, (87)

the inequality [∂I (snr,P ǫ,Q) /∂ǫ]
∣
∣
ǫ=0

6 0 is equivalent to

γi (P ,Q) > γj (P ,Q). Changing the indices between i and

j for pi > 0 and pj > 0 establishes the necessary condition

in (25) while the necessary condition in (26) is established

from the fact that ǫ ≥ 0 and γi (P ,Q) > γj (P ,Q).

B. Sufficiency for Optimal Power Allocation

Let P = diag (p1, . . ., pn0) be the power allocation matrix

satisfying the necessary condition. Then, for an arbitrary

power allocation matrix P̂ = diag (p̂1, . . ., p̂n0), the differ-

ence of ergodic mutual information between I (snr,P ,Q)

and I
(

snr, P̂ ,Q
)

is given in (88), where (a) follows from

the matrix inversion identity
(
I +A−1

)−1
= A (I +A)

−1

[52, eq. (161)]; (b) follows from the arithmetic-geometric

inequality [42]; and (c) follows from the facts that

1

n0

n0∑

i=1

p̂iγi (P ,Q) 6 max
i

γi (P ,Q) , (89)

1

n0

n0∑

i=1

piγi (P ,Q) = max
i

γi (P ,Q) . (90)

This shows that a transmit power allocation satisfying the

necessary condition in (25) and (26) maximizes ergodic mutual

information, which completes the proof.
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