
Lock-Free Incremental Coordinate Descent

Vien V. Mai and Mikael Johansson

Abstract— We study a flexible algorithm for minimizing a
sum of component functions, each of which depends on a large
number of decision variables. The algorithm combines aspects
of incremental gradient method with that of coordinate descent.
In contrast to earlier algorithms of this kind, our algorithm is
lock-free and does not require synchronization of access to the
shared memory. We prove convergence of the algorithm under
asynchronous operation and provide explicit bounds on how the
solution times depend on the degree of asynchrony. Numerical
experiments confirm our theoretical results.

I. INTRODUCTION

The recent emergence of inexpensive multi-core proces-
sors and large-scale data sets has motivated researchers to
develop novel algorithms that are able to split the data and
distribute the computations across multiple processors or
computer clusters (see, e.g., [1]–[3] and references therein).
To achieve substantial speed-ups with parallel computations,
it is essential to minimize the overhead associated with
synchronization and communication, so as to maximize the
time when worker nodes are busy doing actual work.

In this paper, we propose a simple parallel lock-free
algorithm that combines aspects of the incremental gradient
method with that of coordinate descent. Our algorithm allows
multiple worker threads to independently access a shared
memory to gather the information necessary to compute
partial gradients, while a master thread aggregates the mini-
batch and updates the decision variable using stale (delayed)
information. The proposed algorithm is endowed with per-
formance guarantees in a inconsistent read model, where the
coordinates within each mini-batch may have different levels
of delay. Our contributions are summarized as follows:
• We analyze the convergence of the proposed algorithm

under inconsistent read, accounting for data sparsity and
information delay. The result shows that the iterates
converge in expectation to a ball around the optimum.

• We explicitly characterize the convergence factors and
show that the effects of asynchrony such as delay and
inconsistent read are asymptotically negligible.

A. Notation and Preliminaries

We use R and N to denote the set of real and nonnegative
natural numbers, respectively. For a given set, we use | · | to
denote its cardinality. The expectation operator is denoted by
E {·}; ei denotes the ith natural basis vector in Rn; Rj =

This work was not supported by any organization
V. V. Mai and M. Johansson are with the Department of Automatic

Control, School of Electrical Engineering and ACCESS Linnaeus Center,
Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden.
Emails: {maivv, mikaelj}@kth.se.

eje
>
j denotes the projection matrix associated with the jth

coordinate; and ‖·‖ denotes the Euclidean norm.
A function f is called µ-strongly convex on Rn if there

exists a positive constant µ such that

f (y) ≥ f (x) + 〈∇f (x) , y − x〉+
µ

2
‖y − x‖2

holds for all x, y ∈ R
n. We say that a continuously

differentiable function f is L-smooth on Rn if its gradient
is L-Lipschitz, that is

‖∇f (x)−∇f (y)‖ ≤ L ‖x− y‖ , ∀x, y ∈ Rn.

II. PROBLEM SETUP

We consider the unconstrained minimization of the form

min
x∈Rd

f (x) =
1

m

m∑
i=1

fi (x) , (1)

where f1, f2, . . . , fm are L-smooth and convex functions,
and f is µ-strongly convex. In the context of machine
learning, many cost functions are sparse in the sense that
m is very large but each individual fi (x) depends only on
a very small number of components of x (c.f. [1], [3]). In
other words, we can express fi as fi(xEi), where xEi is the
vector x restricted to the coordinates in Ei ∈ {1, . . . , n}.

We consider an inconsistent read model of memory access.
Such a model allows multiple independent processes to
operate simultaneously on different components of the deci-
sion vector. This reflects state-of-the art implementations of
shared memory algorithms, where the full decision vector is
not protected during an update, only the individual elements,
and only while they are written (accomplished using low-
level atomic read operations). From a mathematical analysis
perspective, the inconsistent model implies that the value of
the decision vector x̂ read from the shared memory by some
process may be different from any value of x that has ever
existed in the shared memory; see Figure 1. In effect, the
iterations describing the status of the shared memory have
heterogeneous and time-varying information delays, which
can potentially lead to poor convergence or even divergence.
One can enforce consistent read (which would result in
homogeneous delays in every component of the decision
vector) by locking the shared memory while the master
thread is updating the complete vector. However, such a
mechanism degrades parallel performance significantly since
worker threads will be idle while waiting for the master
thread to complete. Therefore, while most analysis results
for asynchronous optimization algorithms assume consistent
read, the actual implementations are lock-free (e.g., [1], [2],

time

0

0 0 0

0 0

0 0 1

0 0

2 0 1

0 0 3

2 0 3

t0 t1 t2 t3

x

x̂

Fig. 1. A demonstration of inconsistent read model. Suppose that at time
t0, the worker thread T1 is running the reading step and first reads the
first component of x (t0); at time t1, the master thread updates the third
component of x to 1, and T1 reads the second component of x; at time t2,
the master thread updates the first component of x to 2; and finally, at time
t3, the master thread updates the third component of x to 3, and T1 reads
the last component of x. Eventually, T1 obtain the read value x̂ = [0 0 3]>,
which is not a real state of x at any time point.

[4]) and do not enjoy the same theoretical guarantees (and
sometimes no guarantees at all).

To parallelize the computations more efficiently, we will
exploit the fact that data sparsity allows workers to run
largely independently since they only have a small probabil-
ity of interfering with each other. This allows to use larger
step-sizes, and better convergence guarantees. To this end,
we define the sparsity measures: ν̄ = max1≤i≤m |Ei| and
ν = min1≤i≤m |Ei|. Similarly to [1], we define by ∆ the
maximum fraction of rows that intersect any variable as

∆ =
max1≤j≤d |{i ∈ {1, 2, . . . ,m} : j ∈ Ei}|

m
.

These quantities will play a central role in characterizing the
convergence of our algorithm.

III. ALGORITHM AND CONVERGENCE PROPERTIES

In this section, we introduce a lock-free incremental coor-
dinate descent algorithm for solving (1). We then characterize
the convergence rate of the proposed algorithm.

A. Description of the algorithm

Our algorithm is designed to run fully asynchronously on
a shared memory multicore architecture. The computational
burden is divided amongst T worker threads, each of which
has access to a shared memory for the decision variable x.
Workers coordinate with the master thread independently of
each other. The detailed steps are described in Algorithm 1.

In order to establish convergence of Algorithm 1, we
impose the following assumptions.

Assumption 1 (Independence): The sequence {ib(k)}
used to form the sum in Step 4 of Algorithm 1 is uniformly
sampled from {1, 2, . . . ,m}. In addition, we assume that
the random variables ib(k) and jb(k) in Algorithm 1 are
independent of x̂b(k), ∀b ∈ {1, 2, . . . , B} and ∀k ∈ N.

Assumption 2 (Bounded Delay): The time from which a
thread starts reading the iterate vector from shared memory
until its computed gradient is used in an update of the shared
memory is bounded. That is, for each iteration k ∈ N, the
delay τ (k) is finite and there exists an integer τ̄ such that

0 ≤ τ (k) ≤ τ̄ .

Algorithm 1 Lock-free incremental coordinate descent

// Master thread

Input: Initial x0, mini-batch size B, and thread count T .
1: Write x0 into the shared memory and initialize a con-

tainer for collecting data from the T worker threads.
2: for k = 0, 1, . . . do
3: Keep popping the container until we have B dis-

joint coordinates. Denote the index set by S(k) =
{j1(k), j2(k), . . . , jB(k)}.

4: Update the components of x(k) corresponding to S(k)

x(k + 1) = x(k)− γ

B

B∑
b=1

∣∣Eib(k)

∣∣Rjb(k)∇fib(k) (x̂b(k)) .

5: end for
Output: x(k)

// Worker threads

1: while true do
2: Randomly select i ∈ {1, 2, . . . ,m} and j ∈ Ei.
3: Read from the shared memory the components of x

that correspond to Ei. Denote the read value by x̂.

4: Compute ∇jfi (x̂).
5: Push (j,∇jfi (x̂)) into the container.
6: end while

B. Convergence guarantees

The following theorem establishes convergence properties
of Algorithm 1.

Theorem 1: Let Assumptions 1–2 hold and let ξ be any
positive constant. If the step-size γ satisfies

γ ≤
(

2L
(

2cτ̄ +
ν̄

B

)
+

ξµτ̄

ξ + 1
+

√(
cτ̄ +

ν̄

B

)
ξµτ̄

)−1

(2)

where c =
√

∆ν̄/
√
ν, then for every k ∈ N, we have

E
{
‖x(k)− x?‖2

}
≤
(

1− ξµγ

ξ + 1

)k
‖x(0)− x?‖2 + e, (3)

where

e=

(
2
√

∆ν̄τ̄√
ν

+
ν̄

B

)(
γ

µ
+ξτ̄γ2

)
2 (ξ + 1)

ξm

m∑
i=1

‖∇fi (x?)‖2 ,

and x? is the unique minimizer of (1).
Proof: See Appendix A.

Theorem 1 demonstrates that for a constant step-size satis-
fying (2), the iterates generated by Algorithm 1 will converge
linearly in expectation to a ball around the optimum. The
choice of the step-size will affect both the convergence factor
ρ (which determines per-step decay) and the residual error e:
increasing γ gives faster decay, but larger residual error. The
use of mini-batching enables larger step-sizes, thus better
convergence guarantees. The upper bound on the admissible

0 500 1,000 1,500 2,000 2,500 3,000
10−4

10−3

10−2

10−1

100

epoch

f
(x

k
)
−
f
(x

⋆
)

γ = 1
γ = 5
γ = 10

Fig. 2. The distance to the optimal values versus the number of epochs
when B = 5000, τ̄ = 5, T = 4, and γ = 1, 5, 10.

step-size is of O(1/τ̄) and which indicates that both the
decay and the residual error deteriorates as τ̄ increases.

It is instructive to compare our results with the state-
of-the art for related algorithms. If we ignore delays (i.e.
τ̄ = 0) and data sparsity (i.e. ν̄ = d), we recover the
results derived in [5, Theorem 5.5.3] for the synchronous
incremental coordinate descent. We can also compare our
result with [6], which makes a restrictive assumption of
bounded gradient. Specifically, if we let τ̄ = 0 and B = ν̄,
then we obtain the convergence factors ρ = 1−µ/2L and ρ =

1− u/L, and the error terms of C2
1

Lµ and C2
2

4Lµ for Theorem 1
and [6], respectively. Here, C2

1 = 1
m

∑m
i=1 ‖∇fi (x?)‖2, and

C2
2 is a constant such that ‖∇fi (x)‖ ≤ C2, ∀i and x ∈ Rd.

Note that, C1 can be much smaller than C2.
In machine learning applications, the strong convex mod-

ulus µ often arises due to the use of a strongly convex
regularizer, such as the squared `2-norm, and is typically
of the order 1/m, and hence the denominator in (2) is dom-
inated by the first term. Therefore, as long as the maximum
delay is bounded by O

(√
ν/
√

∆
)

, which may be as large
as O (

√
m), the effects of asynchrony are asymptotically

negligible in both convergence factor and the error term.
Theorem 1 also implies that when γ is chosen according to
(2), the remaining error will never increase as τ̄ increases.

Finally, we remark that there exist algorithms that have
delay insensitive convergence (see, e.g., [7]), in the sense
that both the error term and step-size are irregardless of τ̄ .
However, delay does affect the convergence factor and can
result in an arbitrary slow convergence as τ̄ grows large.

IV. EXPERIMENTAL RESULTS

In this section, we perform numerical experiments to
validate the efficacy of the proposed algorithm. Specifically,
we consider an `2-regularized least-squares problem:

min
x

1

2m
‖Ax− b‖2 +

λ

2
‖x‖2 ,

where A and b are constructed from the real data set RCV1
containing 20242 samples and 47236 features with nearly

0 200 400 600 800 1,000
10−3

10−2

10−1

100

epoch

f
(x

k
)
−
f
(x

⋆
)

T = 2

T = 4

T = 8

Fig. 3. The distance to the optimal values versus the number of epochs
when B = 5000, τ̄ = 5, and γ = 5.

0 20 40 60 80 100

20

40

60

80

100

B
100

sp
ee

du
p

ideal speedup

Fig. 4. Speedup of mini-batching for the lock-free algorithm when T = 4
and τ̄ = 5.

1.5 × 106 non-zero entries and ∆ ≈ 0.42.1 The value of λ
is set to 1/m. In order to preserve sparsity of the updates,
we re-write

λ

2
‖x‖2 =

1

m

m∑
i=1

1

2
xTMix

where Mix has the same sparsity pattern as the ith row of A.
Our experiments are implemented in C++ and sparse vector
and matrix operations are handled by the library Eigen2. All
experiments are conducted on a 32-core Intel Xenon machine
with 128 Gigabytes of RAM.

Figure 2 shows the iterate convergence of the proposed
algorithm versus the number of epochs for different values
of γ. One epoch is the expected number of iterations for the
algorithm to use all data once, and is in our case equivalent
to the number of non-zero components of A divided by the
mini-batch size B. We can see that the iterates with larger γ
converge faster to its error ball, however, they also fluctuate
sooner with larger magnitude as predicted in Theorem 1.
Fig. 3 shows the iterate convergence as a function of T . As
can be seen, regardless of the number of worker threads, the

1https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/
datasets/

2http://eigen.tuxfamily.org/

convergence behavior is nearly identical. This is consistent
with the analytical result where we have shown that as long
as the delay is below a certain value, the asynchrony does
not affect the convergence rate of the algorithm. Finally,
the effect of mini-batching is assessed in Fig. 4, where the
gain in terms of the number of iterations required to reach
a suboptimality of 10−4 relative to the case B = 100 is
plotted. We can see that mini-batching achieves a near-linear
reduction in the number of iterations.

V. CONCLUSION

We proposed and analyzed a lock-free incremental coordi-
nate algorithm for minimizing a finite-sum of convex func-
tions. By exploiting data sparsity and using mini-batching,
we shown a significant improvement both in theory and
practice. The results suggest that under mild conditions, the
noise due to asynchronous parallelism is small compared to
the noise arising from stochastic approximation, thus allows
faster parallel and asynchronous solution methods.

APPENDIX

In this section, we prove the main result of the paper.
Before proceeding to the proof, we first introduce two key
lemmas which are very useful in our argument. The first
Lemma is a slight extension of [8] which allows to account
also for the residual error.

Lemma 1: Let {V (t)} and {w (t)} be sequences of non-
negative real numbers satisfying

V (t+ 1) ≤ ρV (t)− αw (t) + β

t−1∑
`=[t−τ(t)]+

w (`) + e, t ∈ N,

for some non-negative constants α, β, and ρ ∈ (0, 1). If τ (t)
for t ∈ N satisfies

0 ≤ τ (t) ≤ τ̄ and
β

1− ρ
1− ρτ̄
ρτ̄

≤ α,

then

V (t) ≤ ρtV (0) +
1

1− ρe, ∀t ∈ N.

To simplify notation, we introduce

g (x, j, i) = |Ei|Rj∇fi (x) .

and re-write the iterations of Algorithm 1 as

x(k + 1) = x(k)− γ

B

B∑
b=1

g (x̂b(k), jb(k), ib(k)) . (4)

Similarly as in [3], we note that

x̂b(k)−x(k)=
γ

B

k−1∑
`=[k−τ(k)]+

P`

B∑
b=1

g (x̂b(`), jb(`), ib(`)) , (5)

where P` is a diagonal matrix whose entries are in {0, 1}.
These matrices account for any possible pattern of (partial)
updates that can occur while x̂b(k) is being processed.

Lemma 2: For any k, ` ∈ N and k 6= `, it holds that

E {〈g (x̂(`), j(`), i(`)) , g (x̂(k), j(k), i(k))〉}

≤
√

∆

2
√
ν

(
E
{
‖g (x̂(`), j(`), i(`))‖2

}
+E

{
‖g (x̂(k), j(k), i(k))‖2

})
.

The proof of Lemma 2 is omitted for brevity, but can be
found in [9]. Note that the sparsity of the vectors involved
allows to decrase the bound by a factor of roughly 1/

√
ν

compared to similar bounds derived in, e.g., [10].

A. Proof of Theorem 1

Proof: We follow a similar flow as in [9], from (4), it
follows that

E
{
‖x(k + 1)− x?‖2

}
= E

{
‖x(k)− x?‖2

}
− 2γ

B

B∑
b=1

T1︷ ︸︸ ︷
E {〈x̂b(k)− x?, g (x̂b(k), jb(k), ib(k))〉}

+
2γ

B

B∑
b=1

E {〈x̂b(k)− x(k), g (x̂b(k), jb(k), ib(k))〉}︸ ︷︷ ︸
T3

+
γ2

B2
E


∥∥∥∥∥
B∑
b=1

g (x̂b(k), jb(k), ib(k))

∥∥∥∥∥
2
︸ ︷︷ ︸

T2

. (6)

First, for the term T1, we have

T1 = E


〈
x̂b(k)− x?,

∑
`∈Eib(k)

R`∇fib(k) (x̂b(k))

〉
(a)
= E

{〈
x̂b(k)− x?,∇fib(k) (x̂b(k))

〉}
(b)
= E {〈x̂b(k)− x?,∇f (x̂b(k))〉}
(c)

≥ E {f (x̂b(k))− f (x?)}+
µ

2
E
{
‖(x̂b(k)− x?)‖2

}
(d)

≥ E {f (x̂b(k))− f (x?)}+
µ

2

ξ

ξ + 1
E
{
‖x(k)− x?‖2

}
− ξµ

2
E
{
‖x̂b(k)− x(k)‖2

}
, (7)

where (a) follows by taking the expectation over the co-
ordinates given all other variables; (b) follows due to the
fact that x̂b(k) is independent of ib(k); (c) follows from the
strong convexity of f ; and (d) follows from the inequality
‖a+ b‖2 ≤

(
1 + 1

ξ

)
‖a‖2 + (1 + ξ) ‖b‖2 with a = x̂b(k)−

x?, b = x̂b(k)− x(k), and ξ > 0.
We next bound the term T2. Note that g (·, ·, ·) is a vector

that has only one non-zero element. Thus,

T2 =

B∑
b=1

E
{
‖g (x̂b(k), jb(k), ib(k))‖2

}

=

B∑
b=1

E

∣∣Eib(k)

∣∣ ∑
`∈Eib(k)

〈∇fib(k) (x̂b(k)) ,

R`∇fib(k) (x̂b(k))〉
}

≤ ν̄
B∑
b=1

E
{∥∥∇fib(k) (x̂b(k))

∥∥2
}
, (8)

where the third equality follows by taking the conditional
expectation over the coordinates given other variables and
the fact that R2

` = R`.

We are now ready to bound the term T3. Due to the limited
space, from now on, we slightly abuse the notation g (·, ·, ·)
by writing it in the first argument only. From (5), we have

T3 =
γ

B
E


k−1∑

`=[k−τ(k)]+

B∑
b′=1

〈P` g (x̂b′(`)) , g (x̂b(k))〉


(a)

≤ γ

B

k−1∑
`=[k−τ(k)]+

B∑
b′=1

E {|〈g (x̂b′(`)) , g (x̂b(k))〉|}

(b)

≤
√

∆γ

2
√
νB

k−1∑
`=[k−τ(k)]+

B∑
b′=1

(
E
{
‖g (x̂b′(`))‖2

}
+E

{
‖g (x̂b(k))‖2

})
≤
√

∆τ̄ γ

2
√
ν
E
{
‖g (x̂b(k))‖2

}
+

√
∆γ

2
√
νB

k−1∑
`=[k−τ(k)]+

B∑
b′=1

E
{
‖g (x̂b′(`))‖2

}
(c)

≤
√

∆ν̄τ̄ γ

2
√
ν

E
{∥∥∇fib(k) (x̂b(k))

∥∥2
}

+

√
∆ν̄γ

2
√
νB

k−1∑
`=[k−τ(k)]+

B∑
b′=1

E
{∥∥∇fib′ (`) (x̂b′(`))

∥∥2
}
, (9)

where (a) follows since P` is a diagonal matrix with diagonal
elements taking values in {0, 1}; (b) follows by Lemma 2;

and (c) follows from (8). Now, combining (6)—(9) yields

E
{
‖x(k + 1)− x?‖2

}
≤
(

1− ξµγ

ξ + 1

)
E
{
‖x(k)− x?‖2

}
+
ξµγ

B

B∑
b=1

E
{
‖x̂b(k)− x(k)‖2

}
+

√
∆ν̄γ2

√
νB

k−1∑
`=[k−τ(k)]+

B∑
b=1

E
{∥∥∇fib(`) (x̂b(`))

∥∥2
}

+

(√
∆ν̄τ̄ γ2

√
νB

+
ν̄γ2

B2

)
B∑
b=1

E
{∥∥∇fib(k) (x̂b(k))

∥∥2
}

− 2γ

B

B∑
b=1

E {f (x̂b(k))− f (x?)} . (10)

We now pay attention to the term E
{
‖x̂b(k)− x(k)‖2

}
in (10), which from (5), can be written as

E
{
‖x̂b(k)− x(k)‖2

}
=
γ2

B2
E


∥∥∥∥∥∥

k−1∑
`=[k−τ(k)]+

P`

B∑
b=1

g (x̂b(`))

∥∥∥∥∥∥
2


≤ γ2

B2

k−1∑
`=[k−τ(k)]+

E


∥∥∥∥∥P`

B∑
b=1

g (x̂b(`))

∥∥∥∥∥
2


+
γ2

B2

k−1∑
`=[k−τ(k)]+

`′ 6=`

E

{∣∣∣∣∣
〈
P`

B∑
b=1

g (x̂b(`)) ,

P`′
B∑
b′=1

g (x̂b′(`
′))

〉∣∣∣∣∣
}
. (11)

Let S1 and S2 be the first and second terms in (11),
respectively. Then, S1 can be bounded as

S1 ≤
γ2

B2

k−1∑
`=[k−τ(k)]+

E


∥∥∥∥∥
B∑
b=1

g (x̂b(`))

∥∥∥∥∥
2


=
γ2

B2

k−1∑
`=[k−τ(k)]+

B∑
b=1

E
{
‖g (x̂b(`))‖2

}
.

For S2, we have

S2 ≤
γ2

B2

k−1∑
`=[k−τ(k)]+

`′ 6=`

B∑
b=1

B∑
b′=1

E {|〈g (x̂b(`)) , g (x̂b′(`
′))〉|}

≤
√

∆γ2

2
√
νB2

k−1∑
`=[k−τ(k)]+

`′ 6=`

B∑
b=1

B∑
b′=1

(
E
{
‖g (x̂b(`))‖2

}

+E
{
‖g (x̂b′(`

′))‖2
})

≤
√

∆τ̄ γ2

√
νB

k−1∑
`=[k−τ(k)]+

B∑
b=1

(
E
{
‖g (x̂b(`))‖2

})
,

where the third inequality follows from Lemma 2, and the
last inequality follows from a simple counting argument.
Thus, we obtain

E
{
‖x̂b(k)− x(k)‖2

}
≤
(
ν̄γ2

B2
+

√
∆ν̄τ̄ γ2

√
νB

)

×
k−1∑

`=[k−τ(k)]+

B∑
b=1

E
{∥∥∇fib(`) (x̂b(`))

∥∥2
}
. (12)

Furthermore, the last term in (10) can be bounded by noting
that [11, Lemma 6.4]

f (x̂b(k))− f (x?)

≥ 1

2L
E
{∥∥∇fib(k) (x̂b(k))−∇fib(k) (x?)

∥∥2
}

(13)

By substituting (12) and (13) into (10), we arrive at

E
{
‖x(k + 1)− x?‖2

}
≤
(

1− ξµγ

ξ + 1

)
E
{
‖x(k)− x?‖2

}
+

(√
∆ν̄τ̄√
νB

+
ν̄

B2

)
γ2

B∑
b=1

E
{∥∥∇fib(k) (x̂b(k))

∥∥2
}

+

(√
∆ν̄√
νB

γ2 + µξ

(√
∆ν̄τ̄√
νB

+
ν̄

B2

)
γ3

)

×
k−1∑

`=[k−τ(k)]+

B∑
b=1

E
{∥∥∇fib(`) (x̂b(`))

∥∥2
}

− γ

LB

B∑
b=1

E
{∥∥∇fib(k) (x̂b(k))−∇fib(k) (x?)

∥∥2
}
.

Using the fact that for i ∈ {1, . . . ,m}

‖∇fi (x)‖2 ≤ 2 ‖∇fi (x)−∇fi (x?)‖2 + 2 ‖∇fi (x?)‖2 ,

we can further bound the expression above as

E
{
‖x(k + 1)− x?‖2

}
≤ (1− y1γ)E

{
‖x(k)− x?‖2

}
−
(
γ − y2γ

2
) 1

LB

B∑
b=1

E
{∥∥∇fib(k) (x̂b(k))−∇fib(k) (x?)

∥∥2
}

+
(
y4γ

2 + y3γ
3
)

× 1

LB

k−1∑
`=[k−τ(k)]+

B∑
b=1

E
{∥∥∇fib(`) (x̂b(`))−∇fib(`) (x?)

∥∥2
}

+
(y2 + τ̄ y4) γ2 + τ̄ y3γ

3

L
E
{
‖∇fi (x?)‖2

}
,

where y1 = ξµ
ξ+1 , y2 = 2L

(√
∆ν̄τ̄√
ν + ν̄

B

)
,

y3 = ξµy2, and y4 = 2L
√

∆ν̄√
ν . Then, by invoking

Lemma 1 with V (k) = E
{
‖x(k)− x?‖2

}
;

w (k) = 1
LB

∑B
b=1E

{∥∥∇fib(k) (x̂b(k))−∇fib(k) (x?)
∥∥2
}

;
ρ = 1 − y1γ; α = −y2γ

2 + γ; β = y3γ
3 + y4γ

2; and
e = (y2+τ̄y4)γ2+τ̄y3γ

3

L E
{
‖∇fi (x?)‖2

}
, it follows that the

sequence {x(k)} generated by Algorithm 1 satisfies (3) if
the following conditions are fulfilled:

γy2 ≤ 1 (14)
1

(1− y1γ)
τ̄ − 1 ≤ y1

−y2γ + 1

y3γ + y4
, (15)

where the first condition comes from the positivity of α
and the second one is the result of the general conver-
gence condition. By Bernoulli’s inequality, we have that
(1− y1γ)

τ̄ ≥ 1 − y1γτ̄ . Hence, if y1τ̄ γ < 1, the LHS of
(15) can be further upper-bounded by

1

(1− y1γ)
τ̄ − 1 ≤ y1τ̄ γ

1− y1τ̄ γ
. (16)

Therefore, if the step-size γ is chosen such that

τ̄ γ

1− y1τ̄ γ
≤ −y2γ + 1

y3γ + y4
,

then the condition (15) will be automatically satisfied. That
is, we want to seek the step-size satisfying

(y3 − y2y1) τ̄ γ2 + (τ̄ y4 + y2 + y1τ̄) γ − 1 ≤ 0. (17)

We observe that x = 1
1+a satisfies the inequality a2x2 +x−

1 ≤ 0 if a is nonegative. Then, by applying the result above
for (17) with x = (τ̄ y4 + y2 + y1τ̄) γ, we can choose the
step-size γ as follows to guarantee the condition (15):

γ ≤ 1

τ̄ y4 + y2 + y1τ̄ +
√

(y3 − y2y1) τ̄
.

It is obvious that this step-size also satisfies the condition
(14) and y1τ̄ γ < 1, which completes the proof.

REFERENCES

[1] F. Niu, B. Recht, C. Ré, and S. J. Wright, “Hogwild: A lock-
free approach to parallelizing stochastic gradient descent,” in Proc.
NIPS’16, Granada, Spains, Dec 2011, pp. 693–701.

[2] J. Liu, S. J. Wright, C. Ré, V. Bittorf, and S. Sridhar, “An asynchronous
parallel stochastic coordinate descent algorithm,” Journal of Machine
Learning Research, vol. 16, no. 1, pp. 285–322, Feb. 2015.

[3] H. Mania, X. Pan, D. Papailiopoulos, B. Recht, K. Ramchandran,
and M. I. Jordan, “Perturbed iterate analysis for asynchronous
stochastic optimization,” Mar. 2016. [Online]. Available: http:
//arxiv.org/abs/1507.06970

[4] J. Liu, S. J. Wright, and S. Sridhar, “An asynchronous parallel
randomized Kaczmarz algorithm,” Jun. 2014. [Online]. Available:
https://arxiv.org/abs/1401.4780

[5] S. Khirirat, “Randomized first-order methods for convex optimization,”
Master’s thesis, KTH Royal Institute of Technology, Stockholm, 2016.

[6] M. Schmidt, “Convergence rate of stochastic gradient with constant
step size,” University of British Columbia, Tech. Rep., May 2014.

[7] A. Aytekin, H. R. Feyzmahdavian, and M. Johansson, “Asynchronous
incremental block-coordinate descent,” in Proc. 52th Annual Allerton
Conference on Communication, Control, and Computing, IL, USA,
2014, pp. 19–24.

[8] ——, “Analysis and implementation of an asynchronous optimization
algorithm for the parameter server,” Oct. 2016. [Online]. Available:
https://arxiv.org/pdf/1610.05507.pdf

[9] V. V. Mai and M. Johansson, “An asynchronous mini-batch random-
ized Kaczmarz algorithm,” submitted for possible publication.

[10] R. Leblond, F. Pedregosa, and S. Lacoste-Julien, “Asaga:
Asynchronous parallel saga,” Jun. 2016. [Online]. Available:
https://arxiv.org/abs/1606.04809

[11] S. Bubeck, “Convex optimization: Algorithms and complexity,” Foun-
dations and Trends in Machine Learning, vol. 8, no. 3-4, pp. 231–357,
2015.

