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Error Exponents for Distributed Detection
Vien V. Mai, Youngmin Jeong, Member, IEEE, and Hyundong Shin, Senior Member, IEEE

Abstract—We consider distributed detection in wireless sensor
networks with a multiple-antenna fusion center. Using the large
deviation principle and random matrix theory, we analyze the
detection performance of optimal hypothesis testing in terms
of error exponents for the false alarm and miss detection
probabilities.

Index Terms—Error exponent, false alarm probability (FAP),
hypothesis testing, large deviation, miss detection probability
(MDP).

I. INTRODUCTION

D ISTRIBUTED detection in wireless sensor networks
(WSNs) has been extensively studied for applications

such as environmental monitoring, weather forecasts, health
care, and home automation (see, e.g., [1]–[9] and references
therein). In a traditional WSN, each sensor forwards its
processed observation to a fusion center (FC) through parallel
access channels (PACs) [1], [2], or a multiple access channel
(MAC) [3]–[6]. The utilized bandwidth scales linearly with
the number of sensors in the PACs, whereas this bandwidth is
irrespective of the number of sensors in the MAC. However,
the noisy received signal at the FC is generally not reliable for
making a decision in the MAC due to the intrinsic properties of
wireless channels (e.g., fading and interference). The multiple-
antenna technology provides reliable communication without
exceeding the costs in power and bandwidth. The recent
advances in hardware technology also highly motivate to use
large-scale multiple antennas at the FC as well as the dense
deployment of low-cost sensors [4]–[9].

In this paper, we characterize the asymptotic detection per-
formance. In particular, we show that under certain conditions,
both the false alarm probability (FAP) and miss detection prob-
ability (MDP) decrease exponentially to zero (see Theorem 1).
We then derive the error exponents for the FAP and MDP,
which enable us to predict how difficult it will be to attain a
certain level of detection reliability (see Theorem 2).

II. SYSTEM MODEL AND METHODOLOGY

A. System Model

We consider a distributed detection system where an nr-
antenna FC collects data from ns sensors during M -sample
time. Let θ be a scalar-valued parameter (e.g., pressure,
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temperature, sound intensity, radiation level, pollution concen-
tration, seismic activity, etc) to be detected. Then, for a binary
hypothesis testing problem, the received signal at the FC under
two hypotheses can be written as

H0 : ZZZ = HHHAWWW +NNN (1)
H1 : ZZZ = HHHAGGGθ +HHHAWWW +NNN (2)

where GGG = [ggg1 . . . gggM ] ∈ Cns×M with gggm ∼ Ñns
(0, I),

m = 1, 2, . . . ,M , is the Rayleigh-fading channel matrix be-
tween the source and sensors; WWW = [www1 . . . wwwM ] ∈ Cns×M

with wwwm ∼ Ñns

(
0, σ2

wI
)

is the additive white Gaussian
noise (AWGN) at the sensors; NNN = [nnn1 . . . nnnM ] ∈ Cnr×M

with nnnm ∼ Ñnr

(
0, σ2

nI
)

is the AWGN matrix at the FC;
HHH ∈ Cnr×ns is the Rayleigh-fading channel matrix between
the sensors and the FC, which remains constant in the M -
sample period; and A = diag (%1, . . ., %ns

) ∈ Rns×ns is
the diagonal matrix of amplification factors.1 Note that all
the random quantities HHH, GGG, WWW , and NNN are statistically
independent. The FC is assumed to have access to perfect
knowledge of HHH but only partial statistical knowledge of GGG
(i.e., mean and covariance of GGG). The sensors do not have the
channel knowledge and the network is subject to a total power
constraint Ptot [8].2 Hence, we set all the amplification factors
%1, %2, . . . , %ns to %/

√
ns where % =

√
Ptot.

B. Hypothesis Testing and Performance Measures

Let zzzm be the mth column of ZZZ, where all the vec-
tors zzzm are mutual independent under both hypotheses.
Then, zzzm ∼ Ñnr

(
0, %2σ2

wΣΣΣ + σ2
nI
)

under H0, and zzzm ∼
Ñnr

(
0, %2

(
θ2 + σ2

w

)
ΣΣΣ + σ2

nI
)

under H1 where ΣΣΣ = 1
ns
HHHHHH

†

and (·)† denotes the transpose conjugate.
We consider the log-likelihood ratio (LLR) test:

T0 =
1

K
log

f (ZZZ|HHH,H1)

f (ZZZ|HHH,H0)

H1

≷
H0

µ (3)

where K = nsM and f (ZZZ|HHH,Hi) is the probability density
function of ZZZ given the channel matrix HHH under Hi.3 By
applying the matrix inversion lemma to (3), we arrive at the
equivalent optimal test:

T1 =
1

K
tr

(
ZZZ
†
[
ΦΦΦ
(
%2θ2ΣΣΣ

)−1
ΦΦΦ + ΦΦΦ

]−1

ZZZ

) H1

≷
H0

ξ (4)

1The notations R and C denote the real and complex numbers; I denotes
the identity matrix; and Ñn (m,ΣΣΣ) denotes the n × 1 complex Gaussian
vector with mean vector m ∈ Cn and covariance matrix ΣΣΣ ∈ Cn×n.

2The power allocation problem in the dense WSNs with multiple antennas at
FC is a still open problem. However, it is difficult to track the all instantaneous
channel state information at the sensors under the dense deployment of low-
cost sensors as well as a large number of antennas at the FC in practise.

3The threshold µ is chosen to guarantee a fixed false alarm rate under the
Neyman-Pearson approach or equivalently equals to 1

K
log (π0/π1) where πi

is a prior probability of the hypothesis Hi, which is minimizing the overall
error probability under the Bayesian approach [5].
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where tr (·) is the trace operator; ΦΦΦ = %2σ2
wΣΣΣ + σ2

nI; and

ξ = µ+
1

ns
log

det
(
ΦΦΦ + %2θ2ΣΣΣ

)
det (ΦΦΦ)

. (5)

Taking the eigenvalue decomposition of ΣΣΣ as ΣΣΣ = UΛΛΛU†

where UUU is a unitary matrix whose columns contain eigenvec-
tors of ΣΣΣ, and ΛΛΛ = diag (λ1, . . ., λnr

) is a diagonal matrix
containing eigenvalues of ΣΣΣ. After some manipulations, the
optimal test T1 can be expressed as

T1 =
1

K

nr∑
i=1

%2θ2λi ‖xxx i‖2
(%2σ2

wλi + σ2
n) (%2 (σ2

w + θ2)λi + σ2
n)

H1

≷
H0

ξ

(6)

where xxx i is the ith row of XXX , U†ZZZ. Note that, due to the
unitary invariance of Gaussian distribution, the mth column of
XXX is a zero mean complex Gaussian vector with the covariance
matrix %2σ2

wΛΛΛ+σ2
nIII under H0 and %2

(
σ2

w + θ2
)

ΛΛΛ+σ2
nIII under

H1. Thus, it follows that ‖xxx i‖2 is the sum of M squared of
independent and identical distributed (i.i.d.) complex normal
random variables. To simplify the subsequent calculations, we
denote γ0 , θ2/σ2

w, γ , Ptotσ
2
w/σ

2
n, and γ1 , γ (1 + γ0).

We define α(K) = P {T1 > ξ|H0} and β(K) =
P {T1 ≤ ξ|H1} as the FAP and MDP, respectively. For the
Bayesian criterion, we also define the detection error proba-
bility (DEP) in terms of α(K) and β(K) as follows:

Pe = π0α
(K) + π1β

(K). (7)

In this paper, we are interested in the error exponents for the
FAP and MDP which are defined respectively as

Kα = lim
K→∞

− 1

K
logα(K) (8)

Kβ = lim
K→∞

− 1

K
log β(K). (9)

Hence, the error exponent for the DEP of the Bayesian
criterion is given by [10]

Ke = lim
K→∞

− 1

K
logPe = min (Kα,Kβ) . (10)

Theorem 1 (FAP and MDP Decay Trends): Consider a de-
tection system with nr → ∞ in such a way that ns/nr → τ

and M/nr → κ. Let λ+ = (1 + 1/
√
τ)

2. Then, for a given
threshold ξ such that

γγ0λ
+

τ (γ1λ+ + 1)
< ξ <

γγ0λ
+

τ (γλ+ + 1)
, (11)

the FAP and MDP decrease exponentially to zero.
Proof: We begin by bounding the FAP as follows:

P {T1 > ξ|H0}

= P

{
1

K

nr∑
i=1

γγ0λi
γ1λi + 1

ζi
2
> ξ

}

≤ 1− P
{

max
1≤i≤nr

γγ0λi
γ1λi + 1

ζi
2
≤ ξτM

}
= 1− exp

(
nr∑
i=1

log (1− P {ζi ≥ 2ξεiτM})
)

(12)

where εi = γ1λi+1
γγ0λi

, and ζi denotes the chi-squared random
variable with 2M degrees of freedom for i = 1, . . . , nr. We
observe that for all t > 0

P {ζi ≥ 2ξεiτM}
(a)

≤ e−2ξεiτMtE
{
etζi
}

(b)
= e−M(2εiξτt+log(1−2t)) (13)

where (a) follows from the Markov’s inequality; and (b)
follows from the moment generating function of the Chi-
squared random variables. We note that the function fεi (t) ,
2εiξτt + log (1− 2t) is concave for all t > 0, and it is
maximized at t? = 1

2

(
1− 1

τεiξ

)
. For a tight bound, we

choose t = t? such that infi
1
2

(
1− 1

τεiξ

)
> 0, or equivalently,

ξ > γγ0λ
+

τ(γ1λ++1) . Substituting t into (13) and combining with
(12), for any given δ > 0, if nr is sufficiently large such that
ns/nr → τ and M/nr → κ, we get

P {T1 > ξ|H0} ≤ 1− exp

(
nr∑
i=1

log
(

1− e−Mfεi (t
?)
))

(a)

≤ 1− exp
(
κ−1M log

(
1− e−Mfεi? (t?)

))
(b)
= 1− exp

(
−κ−1Me−Mfεi? (t?) (1 + o (1))

)
(c)

≤ δ, ∀δ > 0 (14)

where o (·) is the Bachmann-Landau notation; (a) follows
from i? = arg mini fεi (t?); (b) follows from the Taylor’s
expansion of log (1− x); and (c) follows from the fact that
x > log (x) + 1 for all x ∈ (1,∞). From which we complete
the proof for the FAP by letting δ → 0. We omitted the proof
for the MDP, which can be found using the similar steps of
the proof for the FAP.

III. ERROR EXPONENTS

In this section, we analyze the error exponents for the FAP
and MDP.

Theorem 2 (Error Exponents): Consider a detection system
with nr →∞ in such a way that ns/nr → τ . Then, for a given
threshold ξ such that

γ0

4γ (1 + γ0)
2F
(γ1

τ
, τ
)
< ξ <

γ0

4γ
F
(γ
τ
, τ
)
, (15)

the error exponents for the FAP Kα and MDP Kβ defined
in (8) and (9) are given by

Kα = K (γ2, γ1, ξs
?
0; τ) (16)

Kβ = K (γ3, γ, ξs
?
1; τ) (17)

where K (x, z, s; τ) is given in (18); γ2 = γ (1 + (1− s?0) γ0);
γ3 = γ (1− s?1γ0); and s?0 and s?1 are

s?0 =


γ1λ

++1
γγ0λ+ , ξ > γγ0λ

+

√
τ

1 + 1
γ0
, ξ = γγ0

τ

1 + γ−γ̄
γγ0

, otherwise

(19)

s?1 =


γλ++1
γγ0λ+ , ξ > γγ0λ

+

√
τ

1
γ0
, ξ = γγ0

τ
γ−γ̄
γγ0

, otherwise

(20)
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K (x, z, s; τ) = s+ log
τ + x− τ

4F
(
x
τ , τ
)

τ + z − τ
4F
(
z
τ , τ
) +

1

τ
log

1 + x− 1
4F
(
x
τ , τ
)

1 + z − 1
4F
(
z
τ , τ
) −(F (xτ , τ)

4x
− F

(
z
τ , τ
)

4z

)
log e (18)

where γ̄ is the unique solution to the fixed-point equation

ξ − γγ0

4γ̄2
F
( γ̄
τ
, τ
)

= 0 (21)

with

F (x, z) ,

(√
x
(
1 +
√
z
)2

+ 1−
√
x
(
1−√z

)2
+ 1

)2

.

(22)

Proof: We begin by defining the logarithmic moment
generating function (LMGF) Λ

(nr)
i (s) and its limiting LMGF

Λi (s) for i = 0, 1 as

Λ
(nr)
i (s) , logE

{
esT1 |Hi

}
(23)

Λi (s) , lim
nr→∞

1

K
Λ

(nr)
i (Ks) . (24)

Under the hypothesis H0, we have

Λ0 (s) = lim
nr→∞

1

K
log

(
E

{
exp

(
nr∑
i=1

sγγ0λi
γ1λi + 1

ζi
2

)})

= lim
nr→∞

− 1

ns

nr∑
i=1

log

(
1− sγγ0λi

γ1λi + 1

)
a.s→ −1

τ

∫ λ+

λ−
log

(
1− sγγ0λ

γ1λ + 1

)
f? (λ; τ) dλ (25)

for all s ≤ γ1λ
++1

γγ0λ+ , otherwise Λ0 (s)→ +∞.4 Thus, Λ0 (s) is
an extended real number and lower-semicontinuous function.
Because of the bounded derivative at the boundary point,
Λ0 (s) dose not satisfy the steepness condition, and hence
the Gärtner-Ellis theorem [10, Theorem 2.3.6] is not directly
applicable. However, it has been shown that the hypothesis
testing T1 satisfies the large deviation (LD) principle with a
good rate function Λ?i (·) which can be characterized in terms
of the Fenchel-Legendre transform of Λi (s) [12]:

Λ?i (x) = sup
s∈R
{xs− Λi (s)} , x ∈ R. (26)

Let G , {x|x > ξ}, then for a given threshold ξ such that
ξ > limnr→∞E {T1|H0}, the error exponent for FAP is given
by5

Kα = inf
x∈G

Λ?0 (x) = Λ?0 (ξ) . (27)

4The notation a.s→ denotes the almost sure convergence. The function
f? (λ; τ) denotes the Marcĕnko-Pastur law with parameter 1/τ , which is the
asymptotic empirical eigenvalue distribution of ΣΣΣ, with λ− =

(
1− 1/

√
τ
)2

and λ+ =
(
1 + 1/

√
τ
)2, respectively [11].

5Note that in hypothesis testing, the set G ⊂ R mostly satisfies the so-
called I-continuity, i.e., infx∈G◦ Λ?0 (x) = infx∈G Λ?0 (x) with G◦ and
G are the interior and closure of G, respectively [6], [10]. Let T0 ,
limnr→∞ E {T1|H0} and T1 , limnr→∞ E {T1|H1}. Then it can be
shown that Kα = 0 for ξ ≤ T0 and Kβ = 0 for ξ ≥ T1, and Λ?0 (x) is
a nondecreasing function for x ∈ (T0,∞) while Λ?1 (x) is a nonincreasing
function for x ∈ (−∞, T1). Thus, the infimum over the set of interest is
attained at the boundary point x = ξ.

Let s?0 be the optimal solution s in (26) under H0 and ω̇ (s)
be the first order derivative of ω (s) , ξs−Λ0 (s) with respect
to s. Since Λ0 (s) is strictly convex on s ∈

(
−∞, γ1λ++1

γγ0λ+

)
,

there are obviously two possible solutions for s?0:

1) If ω̇ (s) > 0 on s ∈
(
−∞, γ1λ++1

γγ0λ+

)
, then s?0 = γ1λ

++1
γγ0λ+ .

2) Otherwise, s?0 ∈
(
−∞, γ1λ++1

γγ0λ+

)
is the solution which

satisfies ω̇ (s) = 0.
For γ̄ = γ (1 + (1− s) γ0) 6= 0, we have

ω̇ (s) = ξ − γγ0

γ̄

(
1−

∫ λ+

λ−

1

γ̄λ + 1
f? (λ; τ) dλ

)
= ξ − γγ0

4γ̄2
F
( γ̄
τ
, τ
)

(28)

where the last equality follows from [11, eq. (2.52)]. For γ̄ =
0, i.e., s = 1 + γ−1

0 , ω̇ (s) boils down to

ω̇
(
1 + γ−1

0

)
= ξ − τ−1γγ0. (29)

When s?0 6= 1 + γ−1
0 , evaluating ω̇ (s) at the boundary point

s = γ1λ
++1

γγ0λ+ , we get

ω̇

(
γ1λ

+ + 1

γγ0λ+

)
= ξ − γγ0λ

+

√
τ

(30)

from which we arrive at the first case in (19). Since 1+γ−1
0 <

γ1λ
++1

γγ0λ+ , we can exclude the first possibility immediately, and
hence s?0 = 1 + γ−1

0 if and only if ξ = τ−1γγ0. Beyond these
two extreme cases, the optimal s?0 occurs at ω̇ (s) = 0.

We now derive Λ?0 (ξ) defined in (26) by noting that

Λ0 (s?0) = τ−1

∫ λ+

λ−
log (1 + γ1λ) f? (λ; τ) dλ

− τ−1

∫ λ+

λ−
log (1 + γ2λ) f? (λ; τ) dλ

= τ−1V
(γ1

τ
, τ
)
− τ−1V

(γ2

τ
, τ
)

(31)

where V (·, ·) is given in [11, eq. (3.140)] as

V (x, z) , z log

(
1 + x− 1

4
F (x, z)

)
+ log

(
1 + xz − 1

4
F (x, z)

)
− log e

4x
F (x, z) . (32)

From (26), (27), (31), and (32), we arrive at the desired result
in (16) with the threshold ξ chosen from

lim
nr→∞

E {T1|H0} = lim
nr→∞

1

ns

nr∑
i=1

γγ0λi
γ1λi + 1

a.s→ γ0 F
(
γ1
τ , τ

)
4γ (1 + γ0)

2

(33)

lim
nr→∞

E {T1|H1} = lim
nr→∞

1

ns

nr∑
i=1

γγ0λi
γλi + 1

a.s→ γ0 F
(
γ
τ , τ
)

4γ
.

(34)



124 IEEE COMMUNICATIONS LETTERS, VOL. 20, NO. 1, JANUARY, 2016

0 20 40 60 80 100
10−3

10−2

10−1

100

τ = 1

τ = 1

Ptot = 10

K

D
E

P
P
e
(n

s
)

simulation
LD characterization

Fig. 1. DEP Pe and the theoretical LD characterization e−KKe for the
Bayesian testing as a function of K when Ptot = 10, θ = 1, σn = 1,
σw = 1, π0 = π1 = 0.5, and τ = 0.5, 1.

We omitted the proof for the MDP Kβ , which can be found
using the similar steps of the proof for the FAP Kα.

Remark 1: As can be seen from Theorem 2, the limiting
value κ does not affect error exponents.

Corollary 1 (Limiting Error Exponents): As τ → 0, the
error exponents Kα and Kβ in Theorem 2 approach to

K↓α =
(
1 + γ−1

0

)
ξ + log

(
γ0ξ
−1
)
− log (1 + γ0)− 1 (35)

K↓β = γ−1
0 ξ + log

(
γ0ξ
−1
)
− 1. (36)

Proof: These results can be verified from the fact that

lim
τ→0

F
(
x
τ , τ
)

4x
= 1 (37)

lim
τ→0

1

τ
log

(
1 + x− 1

4
F
(x
τ
, τ
))

= 1. (38)

Using (37), we can explicitly find that s?0 = 1+γ−1
0 −ξ−1 and

s?1 = γ−1
0 − ξ−1. Note that as τ → 0, s?0 and s?1 include the

second cases in (19) and (20), respectively, while the first cases
in (19) and (20) are excluded due to ξ → ∞. We also note
that, as τ →∞, the error exponents Kα and Kβ in Theorem 2
approach to zero since limτ→∞ F

(
x
τ , τ
)

= 0.
Remark 2: The amplification factors are static with respect

to the time samples. Note that the equally fixed %i is not
necessary for all results obtained in this paper and hence, it
suffices to have all %i scales as 1/

√
ns.

IV. NUMERICAL RESULTS AND DISCUSSION

Fig. 1 shows the DEP Pe and the theoretical LD character-
ization e−KKe [6] for the Bayesian testing as a function of K
when Ptot = 10, θ = 1, σn = 1, σw = 1, π0 = π1 = 0.5, and
τ = 0.5, 1. It can be seen that the DEP decays exponentially
with K, and the slopes of the DEP curves agree with the
theoretical results as K grows large enough. In this example,
the error exponents for the DEP are equal to Ke = 0.05 and
0.0362 for τ = 0.5 and 1, respectively.

The properties of the error exponents can be ascertained
by referring to Fig. 2 where the error exponent for the DEP

10−3 10−2 10−1 100 101 102
0

0.5

1

1.5

2

2.5

0.25 (τ → 0)

0.67 (τ → 0)

1.31 (τ → 0)

2.14 (τ → 0)

γ0 = 5, 10, 15, 20 dB

Ptot = 10

τ

E
rr

or
E

xp
on

en
t
K e

Fig. 2. Error exponent for the DEP Ke as a function of τ when Ptot = 10,
θ = 1, σn = 1, π0 = π1 = 0.5, and γ0 = 5, 10, 15, 20 dB.

Ke is depicted as a function of τ when Ptot = 10, θ = 1,
σn = 1, π0 = π1 = 0.5, and γ0 = 5, 10, 15, 20 dB. We can
see that the error exponent Ke monotonically decreases with
τ and quickly reaches the limiting values as in Corollary 1.
It can be attributed from the fact that for a given number of
sensors, small τ gives higher number of degrees of freedom
for reliable detection. As expected, the error exponents Ke

approach to 0 as τ → ∞ while the limiting error exponents
defined as K↓e , min

(
K↓α,K↓β

)
are equal to K↓e = 0.25, 0.67,

1.31 and 2.14 for γ0 = 5, 10, 15 and 20 dB, respectively.
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