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Abstract—The degrees of freedom (DoF) of L-path poor scat-
tering full-duplex (FD) systems is studied, in which a FD base
station having M transmit antennas and M receive antennas
supports a set of half-duplex mobile stations (MSs). Assuming
no self-interference, a hybrid scheduling is proposed achieving
the optimal sum DoF with partial channel state information at the
transmitter side as the number of MSs increases. In particular,
the proposed scheme combines a zero-forcing beamforming for
uplink and a random transmit beamforming for downlink with
opportunistic scheduling. It is shown that the optimal sum DoF
of 2M is asymptotically achievable as long as the number of
MSs scales faster than snr

min(M−1,L)+M , where snr denotes the
signal-to-noise ratio.

Index Terms—Degrees of freedom (DoF), full-duplex (FD),
hybrid scheduling, inter-terminal interference, poor scattering.

I. INTRODUCTION

FULL-DUPLEX (FD) technologies have recently been
taken into account as a promising solution for boosting

the spectral efficiency [1]. However, the potential advantage
of FD systems may be limited by a new challenge—the inter-
terminal interference—that does not appear in half-duplex
(HD) systems. The problem of inter-terminal interference in
FD systems has recently been studied in terms of degrees
of freedom (DoF) [2], [3]. In particular, if channels are
ergodic phase fading and full channel state information at the
transmitter (CSIT) is available, then it was shown in [3] that
the DoF of FD systems can be ideally twice as large as that
of HD systems. Several inter-terminal interference cancellation
schemes were shown in [2] for a 3-node FD system, but there
are some practical challenges including the amount of CSI
feedback bits.

In wireless communications systems, opportunistic trans-
mission techniques have been widely studied for broadcast
channels and interference channels [4], [5]. It was pointed
that the same sum rate scaling law as the optimal dirty-paper
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coding can be achieved for broadcast channels via random
beamforming with far less CSI feedback [4]. Moreover, using
opportunistic communications, it is possible to asymptotically
achieve one DoF per user under certain user scaling law
conditions for multi-cell interference channels [5]. Note that
for achieving these DoFs, the transmitters do not require the
knowledge of the instantaneous channel realizations.

In practice, the potential benefits of multiple-antenna sys-
tems may be limited by rank deficiency of the channel matrix
due to a poor scattering channel environment [6]. For example,
because of the excessively high path loss and the sensitivity to
blockages at millimeter wave (mmWave) frequency, mmWave
channels are likely to have an inherent property of the poor
scattering nature (see [7], [8] and references therein). Hence,
it is essential to assess the effects of poor scattering on the
DoF in FD systems. In this letter, we first introduce a hybrid
scheduling into a FD system, which operates in an L-path
poor scattering channel and is composed of a 2M -antenna
FD base station (BS) and a large number of single-antenna
half-duplex mobile stations (MSs). Under the partial CSIT
assumption, our hybrid scheme combines a random transmit
beamforming for downlink along with a zero-forcing (ZF)
filtering for uplink. As our main result, when M uplink and
M downlink MSs are served through our scheduler, we show
that the total DoF of 2M is achievable provided that the
number of MSs scales faster than snr

min(M−1,L)+M , where
snr denotes the signal-to-noise ratio (SNR). We remark that
our scheme only requires each MS to feedback M real values
along with the corresponding beamforming vector indices,
which is significantly less than the full CSIT case.

II. SYSTEM MODEL AND PERFORMANCE METRIC

A. System Model

We consider a cellular system consisting of a FD BS having
M transmit antennas and M receive antennas and a set of N
HD MSs, each of which is equipped with a single antenna,
where N ≥ 2M . Each MS can be supported either as uplink
or downlink, but not simultaneously. We assume that self-
interference due to the FD operation at the BS is completely
suppressed. Suppose that N (u) and N (d) are the sets of trans-
mit and receive MSs, respectively, at a given time, satisfying
that N (u) ∩N (d) = ∅ and N (u) ∪N (d) = {1, · · · , N}. Then,
the M -dimensional received signal vector at the BS (for uplink
transmission) and the received signal at MS j ∈ N (d) (for
downlink transmission) are given by

yyy (u) =
√
snr

∑
i∈N (u)

hhh
(u)
i x

(u)
i + zzz (u),

y
(d)
j =

√
snrhhh

(d)
j

†
xxx (d) +

√
snr

∑
i∈N (u)

gj,ix
(u)
i + z

(d)
j ,
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respectively, where hhh
(u)
i ∈ CM×1, hhh(d)

j ∈ CM×1, gi,j ∈ C are
the channels from MS i to the BS, from the BS to MS j, and
from MS j to MS i, respectively (which will be specified by
reflecting poor scattering characteristics later). The transmit
signal of MS i and the transmit signal vector of the BS,
denoted by x

(u)
i ∈ C and xxx (d) ∈ CM×1, should satisfy

the average power constraint P , i.e., E
{∣∣x (u)

i

∣∣2} = 1 and

E
{∥∥xxx (d)

∥∥2
}

= M .1 The additive noise vector at the BS and

the additive noise at MS j, denoted by zzz (u) ∈ CM×1 and
z

(d)
j ∈ C, are assumed to follow CN (0, I) and CN (0, 1),

respectively.2
We adopt an L-scatterer geometric channel model [6],

in which each scatterer is assumed to contribute a single
propagation path between a transmitter and a receiver. Under
this model, the downlink channel vector hhh

(d)
j (j ∈ N (d)) is

expressed as

hhh
(d)
j =

√
1

L

L∑
`=1

αj (`)
[
eθ

`
j(1) · · · eθ

`
j(M)

]T
=

√
1

L
EEEjαααj , (1)

where eee`j =
[
eθ

`
j(1) · · · eθ

`
j(M)

]T
is the phase array of the

lth scatterer; EEEj =
[
eee1
j · · · eeeLj

]
; αj (`) is the amplitude of

the `th scatterer; and αααj = [αj (1) · · · αj (L)]
T. We assume

that αj (`) follows CN (0, 1) and is independent of different
j and `. We further assume random phases, i.e., θ`j (m) is
drawn uniformly at random over [0, 2π) and is independent of
different j, `, and m. In the same manner, the uplink channel
vector hhh(u)

i (i ∈ N (u)) can be expressed as hhh(u)
j =

√
1
L Ē̄ĒEjᾱααj ,

where Ē̄ĒEj is the random phase matrix and ᾱααj is the amplitude
vector. Lastly, gj,i is expressed as

gj,i =

√
1

L

L∑
`=1

βj,i (`) eϕ
i
j(`) =

√
1

L
ψψψj,iβββj,i, (2)

where ψψψj,i =
[
eϕ

i
j(1) eϕ

i
j(2) · · · eϕ

i
j(L)

]
is the random phase

vector from MS i and βββj,i = [βj,i (1) βj,i (2) · · · βj,i (L)]
T is

the amplitude vector from MS i. We assume the block fading,
i.e., once each channel is realized, it remains fixed during each
coding or communication block. We further assume that full
CSI is available at the receiver side, but only partial CSI is
available at the transmitter side, which will be specified later.

B. Performance Metric
For an uplink and downlink sum-rate pair (R(u),R(d)), the

following sum DoF is achievable:

DoF = lim
snr→∞

R
(u) + R

(d)

log (snr)
. (3)

The primary aim of this letter is to establish a simple
scheduling and beamforming strategy achieving the optimal
sum DoF of the L-path FD system under the partial CSIT
assumption when the number of MSs is large enough.

1For easy presentation, we assume the average transmit power M for xxx(d),
but Theorem 1 still holds under the assumption of E

{∥∥
xxx
(d)
∥∥2} = 1.

2The notation C denotes the complex numbers; (·)T and (·)† denote the
transpose and conjugate transpose, respectively; I denotes the identity matrix;
E {·} denotes the expectation operator; and CN (m,Σ)Σ)Σ) denotes the complex
Gaussian vector with mean vector m and covariance matrix ΣΣΣ.

III. HYBRID SCHEDULING AND DOF ANALYSIS

Our hybrid scheme employs different beamforming strate-
gies for uplink and downlink. For uplink transmission, a zero-
forcing (ZF) beamforming can be applied at the BS to null out
uplink interference without CSIT. For downlink transmission,
on the other hand, ZF at the BS is impossible without CSIT
and moreover there exists MS-to-MS interference due to
the FD operation.3 To manage both downlink interference
and MS-to-MS interference, for downlink transmission, we
introduce an opportunistic scheduling combined with a random
transmit beamforming. The overall procedure is described
according to the following steps:

1. A set of M uplink MSs S(u) = {φ1, · · · , φM} is
chosen from {1, · · · , N} in a round-robin fashion,
where the fairness among uplink MSs is automati-
cally guaranteed, and each MS in S(u) transmits its
uplink packets.

2. The BS decodes uplink packets transmitted from
S(u) using the ZF receive beamforming.

3. The BS broadcasts M orthogonal beamforming vec-
tors {vvvm ∈ CM×1}Mm=1 to the MSs in {1, · · · , N}\
S(u), where {vvvm}Mm=1 are generated according to an
isotropic distribution.

4. Each MS j ∈ {1, · · · , N} \ S(u) computes

Ij,m =

M∑
`=1, 6̀=m

∣∣∣∣hhh(d)
j

†
vvv `

∣∣∣∣2 +

M∑
`=1

|gj,φ` |
2 (4)

for all m ∈ {1, · · · ,M} and feeds back {Ij,m}Mm=1

to the BS, where the first and second terms in (4)
indicate the downlink and MS-to-MS interference
powers, respectively.

5. For m ∈ {1, · · · ,M}, the BS selects

πm = arg min
j∈{1,··· ,N}\

(
S(u)∪{π`}m−1

`=1

) Ij,m,
and constructs S(d) = {π1, · · · , πM}, where
{πk}0k=1 = ∅. Then, the BS transmits its downlink
packets to the MSs in S(d) using {vvvm}Mm=1, i.e., MS
πm is served by the beamforming vector vvvm.

6. Each MS in S(d) decodes its downlink packets.
For the proposed scheme, we assume that each MS j ∈

{1, · · · , N} \ S(u) can track the MS-to-MS interference
by overhearing uplink pilot signals, and the BS can attain
{Ij,`}M`=1 of each MS j ∈ {1, · · · , N} \ S(u) by feedback.

The following theorem shows that the propose scheme
asymptotically achieves the optimal sum DoF as the number
of MSs is greater than a certain level.

Theorem 1: For the L-path FD system in Section II,
DoF = 2M is achievable with high probability (whp) if
N = ω

(
snr

β
)
, where β = min (M − 1, L) +M .4 ♦

Note that this DoF achievability matches with the upper
bound on the DoF obtained by assuming no MS-to-MS inter-
ference in the FD system as an ideal case. It is worthwhile to

3Unlike the strategy in [9] that applies a random receive beamforming at the
BS, we apply the ZF receive beamforming, which can be performed without
CSIT.

4We use the Bachmann–Landau notation: f (x) = O (g (x)) if
limx→x0

f(x)
g(x)

= c <∞ and f (x) = ω (g (x)) if limx→x0
f(x)
g(x)

=∞.
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mention that as L decreases, the number of required MSs to
attain DoF = 2M decreases as proved in Theorem 1, which
will also be demonstrated via numerical evaluation in Section
IV. For the rest of this section, we prove Theorem 1. We
assume that S(u) = {1, · · · ,M} for notational convenience.
It is obvious that the sum DoF of M is achievable for uplink
transmission by ZF at the BS. Let us now focus on downlink
transmission. For m ∈ {1, · · · ,M}, the received signal-to-
interference-plus-noise ratio (SINR) at MS πm is given by

sinr
(d)
πm =

∣∣∣hhh(d)
πm

†
vvvm

∣∣∣2 snr
1 + Iπm,msnr

. (5)

Then, the downlink sum rate is given by

R
(d) =

M∑
m=1

log2

(
1 + sinr

(d)
πm

)
. (6)

We first introduce the following important lemmas charac-
terizing the asymptotic behavior of interference power.

Lemma 1 (Interference Power Statistics): Let FIj,m (ξ) de-
note the cumulative distribution function (CDF) of Ij,m in (4).
Then,

FIj,m (ξ) ≥ e−1 (2 (M − 1)M)
−β

Γ (β + 1)
ξβ (7)

for 0 < ξ < 2M (M − 1), where Γ (·) is the Euler gamma
function.5

Proof: See Appendix A.
Lemma 2 (Asymptotic Interference Power): For any con-

stant ε > 0 independent of snr, the probability that Iπm,m ≤
ε
snr

for all m ∈ {1, · · · ,M} is lower-bounded by

1−M

(
1− e−1 (2 (M − 1)M)

−β

Γ (β + 1)

( ε

snr

)β)N−2M+1

. (8)

Proof: Let Am , {1, · · · , N} \
(
S(u) ∪ {π`}m−1

`=1

)
and

|Am| be the candidate set associated with the mth beamform-
ing vector and its cardinality, respectively. Then for a constant
ε > 0, independent of snr, and all m ∈ {1, · · · ,M}, we have

P
{
Iπm,m ≤

ε

snr

}
≥ P

{
max

1≤m≤M
min
j∈Am

Ij,m ≤
ε

snr

}
(a)

≥ 1− P
{
∃m : min

j∈Am
Ij,m ≥

ε

snr

}
(b)

≥ 1−M P

{
min
j∈Am

Ij,m ≥
ε

snr

}
(c)
= 1−M

(
1− FI1,m

( ε

snr

))|Am|
(d)

≥ 1−M
(

1− C
( ε

snr

)β)N−2M+1

, (9)

where C = e−1(2(M−1)M)−β

Γ(β+1) ; (a) holds from the De Morgan’s
law; (b) follows from the union bound; (c) follows since Ij,m
∀j ∈ Am are the independent and identically distributed (i.i.d.)
random variables for a given m, owning to the fact that the
channels are i.i.d. and the beamforming matrix is unitary; and

5Note that when M = 1 the term (M − 1)M in (7) is replaced by one.
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Fig. 1. The average interference power versus N for the FD system with
M = 3. The following two cases are considered: i) L = 1 and ii) L = 5.

(d) follows from Lemma 1 since 0 < ε
snr
≤ 2M(M − 1) as

snr → ∞ and from the fact that |Am| ≥ N − 2M + 1. This
completes the proof of the lemma.

We are now ready to prove Theorem 1. From (5), if
Iπm,m snr ≤ ε for ε > 0 independent of snr for all m ∈
{1, · · · ,M}, then it follows from (3) and (6) that the sum DoF
of M is achievable for downlink transmission. From Lemma 2,
P
{
Iπm,m ≤ ε

snr

}
is lower-bounded by (8), which converges to

one as snr→∞ if N = ω
(
snr

β
)
. Hence, the sum DoF of M

is achievable for downlink transmission whp if N = ω
(
snr

β
)
.

In conclusion, DoF = 2M is achievable whp if N = ω
(
snr

β
)
,

which completes the proof of Theorem 1.
Remark 1: It is not difficult to show that for large N ,

E

{
max

1≤m≤M
Iπm,m

}
≤ O

(
N−

1
β

)
.

Then, from (9) and the Markov’s inequality, it follows that

1− P
{
Iπm,m ≤

ε

snr

}
≤ Msnr

ε
E

{
max

1≤m≤M
Iπm,m

}
= O

(
snr

N1/β

)
,

which tends to zero if N = ω
(
snr

β
)
. Thus, we obtain the

same scaling law as in Theorem 1. This implies that the faster
interference decaying rate with respect to N , the smaller SNR
exponent in the user scaling law.

Remark 2: For rich scattering environments, i.e., L → ∞,
the DoF of 2M is achievable if N = ω

(
snr

2M−1
)
. We also

note that when L < M , the user scaling law required to
achieve full DoF gets reduced to N = ω

(
snr

L+M
)
. This can

be attributed from the fact that as L decreases, the probability
that the interfering links suffer from a deep fade is increased,
which in turn results in a reduction on the SNR exponent in
the user scaling law condition.

IV. NUMERICAL EVALUATION AND DISCUSSIONS

In Fig. 1, the log-log plot of the average interference
power versus N is shown for the FD system when M = 3
and L = 1, 5. It can be seen that the interference power
tends to decrease linearly with N . In this figure, the dashed
lines are also plotted from theoretical results in Remark 1
with a proper bias to check their slopes. We can see that
the interference power decaying rates are consistent with
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Fig. 2. The achievable sum-rates of the FD system by different user
scheduling schemes when M = 3, L = 5, and N = 100.

the user scaling condition in Theorem 1. More specifically,
the interference power is reduced as L decreases, but the
slopes of the simulated curves remain almost the same when
L ≥ M − 1. This numerical result is sufficient to guarantee
our DoF achievability in Section III.

To further ascertain the efficacy of our scheme, performance
comparison is made with the existing scheme in [9]. The
achievable sum-rates are illustrated in Fig. 2 according to snr

when L = 5, M = 3, and N = 100. We can see that our
scheme outperforms the conventional one beyond a certain low
SNR point. This is because our scheme guarantees (at least)
M DoF by taking advantage of the ZF receiver for uplink,
thus resulting in infinitely large sum-rates with increasing
snr. On the other hand, for fixed N , the sum-rates of the
scheme in [9] are slightly changed as snr increases due to the
residual interference at each dimension. In Fig. 2, the sum-
rate curve of another scheme employing the proportional fair
(PF) scheduler [10] with random beamforming for downlink
transmission is also plotted, where the past window length is
set to 100 time slots, which is a typical value to guarantee the
fairness. As in the original hybrid scheme, the scheme applies
the round-robin scheduler with ZF beamforming for uplink.
We can see that the hybrid scheme with PF scheduling has a
comparable sum-rate performance for practical N .

APPENDIX A
PROOF OF LEMMA 1

From (1) and (2), the interference power defined in (4) can
be expressed as

Ij,` =
1

L
ααα†jEEE

†
jΦΦΦ`ΦΦΦ

†
`EEEjαααj +

1

L

M∑
m=1

∣∣ψψψj,mβββj,m∣∣2 , (10)

where ΦΦΦ` = [vvv1 . . .vvv `−1 vvv `+1 · · · vvvM ]. Let ΣΣΣ = EEE
†
jΦΦΦ`ΦΦΦ

†
`EEEj ,

ΨΨΨm = ψψψ†j,mψψψj,m, and (ΣΣΣ)i,i be the i-th diagonal element of
the matrix ΣΣΣ. Then, we have

(ΣΣΣ)i,i =

M∑
m=1,m 6=j

∣∣vvv †meeeij∣∣2 ≤ (M − 1)M,

which comes from the Cauchy’s inequality and the fact that
vvvm’s are orthogonal vectors. Thus, the maximum eigenvalue
of ΣΣΣ, λmax (ΣΣΣ), satisfies λmax (ΣΣΣ) ≤ (M − 1)ML. We also
note that rank (ΣΣΣ) = min (M − 1, L), λmax (ΨΨΨm) = L,

and rank (ΨΨΨm) = 1. Let ΣΣΣ = UUUΓΓΓUUU† be the eigenvalue
decomposition of ΣΣΣ, where UUU is a unitary matrix whose
columns contain eigenvectors of ΣΣΣ and ΓΓΓ is the diagonal
matrix containing eigenvalues of ΣΣΣ. By combining all the
above observations, for M > 1, the interference power can
be upper-bounded by

Ij,`≤ααα†jUUUΓ̀ΓΓUUU†αααj+
(
M2−M

) M∑
m=1

βββ†j,m

(
1 000
000 000

)
βββj,m, (11)

where the inequality holds since 1
LΣΣΣ � UUUΓ̀ΓΓUUU† and M > 1

with6

Γ̀ΓΓ =


(M − 1)MIL L < M − 1,(

(M − 1)MIM−1 000

000 000

)
otherwise.

Due to the unitary invariance of Gaussian distribu-
tion, the right-hand side of (11) can be expressed as
(M − 1)Mχ2 (2β), where χ2 (k) denotes the Chi-squared
random variable with k degrees of freedom. Therefore, it
follows that

FIj,` (ξ) ≥ P
{
χ2 (2β) ≤ ξ

(M − 1)M

}
≥ γ (β, ξ/ (2 (M − 1)M))

Γ (β)

≥ e−1 (2 (M − 1)M)
−β

Γ (β + 1)
ξβ ,

where Γ (·) and γ (·, ·) are the Euler gamma and incomplete
gamma functions, respectively , and the last inequality follows
from [5], which results in (7).
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