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ABSTRACT
This paper introduces a novel technique for nonlinear ac-
celeration of first-order methods for constrained convex op-
timization. Previous studies of nonlinear acceleration have
only been able to provide convergence guarantees for uncon-
strained convex optimization. In contrast, our method is able
to avoid infeasibility of the accelerated iterates and retains
the theoretical performance guarantees of the unconstrained
case. We focus on Anderson acceleration of the classical
projected gradient descent (PGD) method, but our techniques
can easily be extended to more sophisticated algorithms, such
as mirror descent. Due to the presence of a constraint set, the
relevant fixed-point mapping for PGD is not differentiable.
However, we show that the convergence results for Anderson
acceleration of smooth fixed-point iterations can be extended
to the non-smooth case under certain technical conditions.

Index Terms— Anderson acceleration, constrained opti-
mization, projected gradient descent, semi-smoothness

1. INTRODUCTION

Acceleration, i.e. the use of history information to speed up
the convergence of an iterative method, is a huge topic in
optimization. A notable example is momentum acceleration,
which covers well-known methods such as Polyak’s heavy
ball method [1] and Nesterov’s fast gradient method [2].
Unlike momentum acceleration methods, which require
knowledge of problem parameters, classical extrapolation
techniques, such as Aitken’s ∆2 and Wynn’s ε-algorithm for
scalar sequences, or Anderson acceleration (AA) [3], mini-
mal polynomial extrapolation (MPE) [4], and reduced rank
extrapolation (RRE) [5] for vector sequences, estimate the
solution directly from the available sequence. The literature
on these techniques is vast and we refer to [4, 6] for more
comprehensive surveys.

Even though vector extrapolation methods have a wide
range of applications across different scientific fields, their
development is largely independent of optimization algo-
rithms. For example, AA has been successfully applied to
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many problems in computational chemistry, physics, and
material science, but its connection to quasi-Newton meth-
ods was only discovered recently [7]. During the last cou-
ple of years, extrapolation methods have started to attract
a significant interest in the optimization community (see,
e.g., [8–13]). Specifically, a series of papers [10–12] adapt
the AA scheme to accelerate several classical algorithms for
unconstrained optimization, while [13] extends the reach of
AA to non-expansive and possibly non-smooth operators.
Several empirical examples are given demonstrating great
benefits of nonlinear acceleration even for non-smooth opti-
mization problems.

Although the above-cited methods have been successfully
adapted to unconstrained optimization algorithms, none of the
proposed techniques are able to guarantee acceleration, or
even convergence, for constrained problems. The main dif-
ficulty is that the extrapolated point in such methods may lie
outside the feasible set. In this paper, we will demonstrate
how this issue can be circumvented, and several popular first-
order methods for constrained convex optimization can be
accelerated. Under certain technical conditions, we extend
the convergence results of AA in [14] for smooth fixed-point
problems to the nonsmooth ones.

2. NONLINEAR ACCELERATION

In this section, we aim to find an approximate solution to the
following fixed-point problem:

Find x ∈ Rn such that x = g(x), (1)

where g : Rn → R
n is a contractive mapping. Let {xi}ki=0

be a (convergent) sequence of iterates generated by the fixed-
point iteration:

xk+1 = g(xk), k = 0, . . . , k.

We refer the quantity rk = g(xk) − xk as the residual in the
kth iteration. Nonlinear acceleration methods seek to com-
bine past iterates into a new point with smaller residual. To
this end, it forms

xext =

k∑
i=0

αixi (2)



with αi ∈ R. The name nonlinear acceleration comes from
the fact that the optimal weights αi are nonlinear functions of
xi. Ideally, we want to have xext that minimizes the residual
among all possible linear combinations of {xi}ki=0:

α?=argmin
α

∥∥∥∥∥g
(

k∑
i=0

αixi

)
−

k∑
i=0

αixi

∥∥∥∥∥ . (3)

However, solving (3) can be hard for a general nonlinear map-
ping g, hence we solve instead

α?=argmin
α:α>1=1

∥∥∥∥∥
k∑
i=0

αig(xi)−
k∑
i=0

αixi

∥∥∥∥∥=argmin
α:α>1=1

∥∥∥∥∥
k∑
i=0

αiri

∥∥∥∥∥ ,
(4)

where the constraint on α ensures convergence. It can be veri-
fied that problems (3) and (4) are equivalent when g is a linear
mapping. If we let R = [r0 r1 . . . rk] be the matrix whose
columns are the residuals ri, then the problem (4) can be writ-
ten as

α? = argmin
α>1=1

‖Rα‖ . (5)

To keep the cost of evaluating α? small, nonlinear accelera-
tion methods typically only use them+1 most recent iterates
{xi}ki=k−m instead of the full past history {xi}ki=0.

In this work, we focus on the AA scheme, which is de-
tailed in Algorithm 1. Note that AA is closely related to other
vector extrapolation methods such as MPE [4] and RRE [5].
In the linear case, it has been shown in [8, 15] that AA is
essentially equivalent to GMRES method [16] in a certain
sense. Since the columns of Rk in Step 4 of Algorithm 1
become increasingly similar as the iterates converge, AA can
be highly unstable. To stabilize the algorithm, the authors
in [10] add Tikhonov regularization to the least-squares prob-
lem (5), resulting in the so-called regularized nonlinear ac-
celeration (RNA). Moreover, the remarkable connection be-
tween AA and quasi-Newton methods shown in [7] can also
suggest alternative ways to stabilize the AA scheme inspired
by the rich history of quasi-Newton methods (see, e.g., [13]
and the references therein).

Existing work on AA has focused on unconstrained con-
vex optimization problems:

minimize
x∈Rn

f(x). (6)

For example, the classical gradient descent (GD) method

xi+1 = xi − γ∇f(xi),

which can be seen as the fixed-point iteration of the mapping
g(x) = x− γ∇f(x). Clearly, a fixed-point of g corresponds
to an optimal solution of (6). If f is strongly convex with a
Lipschitz continuous gradient, the authors in [10] shown that

Algorithm 1 Anderson Acceleration

Input: x0, m ≥ 1

1: x1 ← g(x0)
2: for k = 0, 1, . . . ,K − 1 do
3: mk ← min(m, k)
4: Rk ← [rk−mk

, . . . , rk], where ri = g(xi)− xi
5: αk ← argminα>1=1 ‖Rkα‖
6: xk+1 ←

∑mk

i=0 α
k
i g(xk−mk+i)

7: end for
Output: xK

the RNA scheme (corresponding to AA withm =∞) applied
to GD achieves the same convergence rate as the Nesterov’s
fast gradient descent method, when initialized near the opti-
mal solution. Several extensions have been made recently to
handle stochastic gradient methods [11], algorithms with mo-
mentum terms such as Nesterov’s accelerated gradient, and
primal dual methods [12]. It is worth noting that the per-
formance guarantees of RNA requires differentiability of g,
which rules out many non-smooth methods such as projection
and proximal-type methods. Very recently, the work in [13]
extends AA to nonexpansive and possibly non-smooth opera-
tors, thereby covering unconstrained proximal-type methods.
However, the case with a convex constraint is still left open.
The main difficulty is that the extrapolated point may lie out-
side the feasible set. In the next section, we will show how to
use nonlinear acceleration to speed-up the classical projected
gradient method in solving constrained convex problems.

3. NONLINEAR ACCELERATION FOR
CONSTRAINED OPTIMIZATION

Consider a generic constrained convex optimization problem:

minimize
x∈C

f (x) , (7)

where f is a proper, closed convex function with nonempty
interior domain and C is a closed convex set. A the classical
method for solving (7) is projected gradient descent (PGD),
where each iteration consists of a gradient step followed by
an orthogonal projection onto C. Let x0 ∈ C and let γ be a
positive stepsize, then PGD iteration reads:

yk+1 = xk − γ∇f(xk) (8)
xk+1 = ΠC(yk+1) . (9)

The key idea behind this algorithm is summed up by the fol-
lowing proposition:

Proposition 1. Let f be a proper closed and convex function
and let C be a closed convex set satisfying C ⊆ int(dom(f)).
Then, x? is an optimal solution to (7) if and only if

x? = ΠC(x
? − γ∇f(x?)) . (10)



The proposition implies that the PGD algorithm can
be seen as a fixed-point iteration for the mapping g(x) =
ΠC(x− γ∇f(x)). However, as mentioned before, naively
using nonlinear acceleration for this mapping may render
iterates infeasible.

Our method hinges on the following simple observation:

‖xk+1 − x?‖ = ‖ΠC(yk+1)−ΠC(x
? − γ∇f(x?))‖

≤ ‖yk+1 − y?‖ ,
where y? = x? − γ∇f(x?) and the inequality follows from
the nonexpansiveness of the projection operator. The inequal-
ity suggests that if one can quickly drive ‖yk − y?‖ to zero,
then the convergence of {xk} will automatically follow. This
motivates us to study the following mapping:

g(y) = ΠC(y)− γ∇f(ΠC(y)). (11)

Evidently, if y is a fixed-point of g(y), then x = ΠC(y) is an
optimal solution to (7) since it satisfies condition (10). Thus,
one can instead focus on finding a fixed-point of g defined
in (11). Note that the fixed-point iteration yk+1 = g(yk) is
exactly the PGD iteration in (8)–(9).

In short, we propose to use nonlinear acceleration for the
auxiliary sequence {yk} instead of the primal sequence {xk}.
This is important since {yk} are not restricted to the constraint
set C, hence avoiding the feasibility issue. We emphasize that
extending the proposed scheme to other popular methods such
as mirror descent is rather straightforward. Due to the limited
space, we substantiate this claim in a more complete version
of the current paper.

4. CONVERGENCE GUARANTEE

We now discuss the theoretical performance guarantee of the
proposed scheme. So far, all convergence rate guarantees for
AA rely on linearizing the mapping g around a fixed-point x?:

g(x) = g(x?) +G′(x?) (x− x?) + o(‖x− x?‖),
where G′(x?) is the Jacobian matrix of g at x?. Due to the
presence of the projection operator, the mapping g defined
in (11) is, in general, non-differentiable. Therefore, the anal-
yses in [10] and [14] are not applicable anymore. However,
we observe that the proof of Theorem 2.3 in [14] essentially
only needs that the bound

‖F (x)− F ′(x?)(x− x?)‖ ≤ c

2
‖x− x?‖2 , (12)

holds for some constant c > 0 and for all x sufficiently close
to x?, where F (x) , x−g(x). Interestingly, this condition is
very similar to assumptions which guarantee convergence of
Newton’s method for solving non-smooth nonlinear equations
(see [17, Chapter 7] for an excellent review). Two key ingre-
dients in the analysis of non-smooth Newton methods are the
use of Clarke’s generalized Jacobian [18] and the concept of
semi-smoothness [19, 20], defined below.

Definition 1 (Semi-smoothness). Let F : Ω → R
n be a

locally Lipschitz continuous function and let ∂F (x) be the
Clarke generalized Jacobian of F at x. We say that F is
semismooth at x ∈ Ω if:
i) F is directionally differentiable at x; and
ii) For any h ∈ Ω and J ∈ ∂F (x+ h),

‖F (x+ h)− F (x)− Jh‖ ≤ o(‖h‖) as h→ 0.

Furthermore, F is said to be strongly semi-smooth at x ∈ Ω
if F is semi-smooth and for any h ∈ Ω and J ∈ ∂F (x+ h),

‖F (x+ h)− F (x)− Jh‖ ≤ O(‖h‖2) as h→ 0.

If F is (strongly) semi-smooth at each point of Ω, then we say
that F is (strongly) semi-smooth on Ω.

The class of semi-smooth functions is very broad and
includes smooth functions, convex functions, and piecewise
smooth functions. For example, differentiable functions with
a Lipschitz continuous gradient are strongly semi-smooth;
the norm function ‖·‖p is strongly semis-mooth for every
p ∈ [1,∞]; piecewise affine functions such as max(x, 0) are
strongly semi-smooth [17]. Semi-smoothness is closed under
scalar multiplication, summation and composition.

Proposition 2 ([17, 21]). Projections onto the nonnegative
orthant, second-order cone, positive semidefinite cone, and
polyhedral set are all strongly semismooth.

To extend the results in [14] to nonsmooth mappings, we
impose the following assumption.

Assumption 1. i) There is a ρ ∈ (0, 1) such that ‖g(x)− g(y)‖ ≤
ρ ‖x− y‖ for all x, y ∈ B(x?, r) for some r > 0.
ii) The mapping F is strongly semi-smooth at x? and every
J? ∈ ∂F (x?) is nonsingular.
iii) There is Mα such that

∑mk

i=0 |αki | ≤Mα for all k ≥ 0.

Note that Assumptions 1-i) and 1-iii) are standard in the
analysis of AA, while Assumption ii) is new. The following
Theorem is the generalization of Theorem 2.3 in [14].

Theorem 1. Let Assumption 1 hold and let ρ < ρ̃ < 1. Then
if x0 is sufficiently close to x?, the iterates generated by An-
derson acceleration converge linearly to x?:

‖xk − x?‖ ≤
1 + ρ

1− ρ ρ̃
k ‖x0 − x?‖ .

Theorem 1 extends the convergence result for AA of gen-
eral fixed-point problems presented in [14] to a more general
setting, where the relevant mapping g can be non-smooth.
The result allows us to establish the following convergence
guarantee for AA of PGD proposed in the previous section.

Proposition 3. Let f be a µ-strongly convex and L-smooth
function and let the stepsize γ ∈ (0, 2/(µ+L)]. Suppose that



0 20 40 60 80 100
10−20

10−16

10−12

10−8

10−4

100

Iteration k

f
(x

k
)
−
f
(x

⋆
)

PGD
APGD
AA-PGD

Fig. 1. Error versus the number of iterations for different al-
gorithms for solving the nonnegative least squares problem.

the projection onto C is strongly semi-smooth and that x0 is
sufficiently close to x?. Then, for any k ∈ N+, the iterates
formed by AA applied to PGD satisfy:

‖xk − x?‖ ≤
1 + ρ

1− ρ ρ̃
k ‖x0 − x?‖ ,

where ρ =
√

1− γ2µL/(µ+ L) and ρ < ρ̃ < 1.

We make the following remarks:

Remark 1. The value of ρ can be easily verified using the
gradient Lipschitz constant and strong convexity modulus of
of f . It is also possible to prove that the mapping F (x) = x−
g(x) is strongly monotone, hence the nonsingularity condition
of all J? ∈ ∂F (x?) in Assumption 1-ii) is always satisfied.
Finally, since ΠC(·) is assumed to be strongly semi-smooth
and since strong semi-smoothness is closed under composi-
tion, F is strongly semi-smooth.

5. NUMERICAL RESULTS

We will now illustrate the performance of our scheme (AA-
PGD) on two constrained optimization problems with many
applications in signal processing and machine learning. We
compare AA-PGD with the original PGD and Nesterov’s ac-
celerated projected gradient descent (APGD) method [2].
Nonnegative least squares. Here, we consider

minimize
x∈Rd

1

2n
‖Ax− b‖2 subject to x ≥ 0,

with A ∈ R1000×5000 and b ∈ R1000 generated by drawing
their elements from a Gaussian distribution with zero mean
and unit variance. We set γ = 1/L, where L = ‖A‖22 /n.
Constrained logistic regression. This problem has the form

minimize
x∈Rd

1

n

n∑
i=1

log(1 + exp(−yia>i x)) + µ ‖x‖2

subject to ‖x‖∞ ≤ 1,
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Fig. 2. Error versus the number of iterations for different al-
gorithms for the constrained logistic regression problem.

where ai ∈ Rd are training samples and y ∈ {−1, 1}n are
the corresponding labels. We use the UCI Madelon dataset,
which contains 2000 training samples and 500 features1. We
set µ = 0.01, compute L = ‖A‖22 /4nwithA = [a1, . . . , an],
(i.e. the condition number is 3×109) and use γ = 2/(L+µ).

For AA-PGD, we simply set m = 5 and add a Tikhonov
regularization of 10−8

∥∥R>R∥∥ to (5) for stabilization, as was
done in [11]. For APGD, we use the optimal combination co-
efficient β = (

√
L −√µ)/(

√
L +
√
µ) for the second prob-

lem. Finally, f(x?) is set to the value returned by the package
scipy.optimize, and all algorithms are initialized at 0.2

Figures 1 and 2 show that AA-PGD results in dramatic
performance improvements over the vanilla PGD and signif-
icantly outperforms the optimal first-order method APGD,
even when APGD knows the strong convexity parameter µ.
Notably, in Fig. 2, due to the large condition number of the
problem, PGD and APGD make very little progress in the first
300 iterations while AA-PGD quickly finds a high accuracy
solution within 200 iterations. We remark that the additional
computations in AA-PGD are very marginal, hence the speed-
up over PGD and APGD in number of iterations translates to
a similar acceleration in wall-clock time.

6. CONCLUSIONS

We have proposed a method to accelerate popular first-order
methods for constrained convex optimization using vector ex-
trapolation techniques. The method fits nicely to the non-
linear acceleration framework without introducing additional
computational burdens or modifications. Using the notion of
semi-smoothness from nonsmooth analysis, we extended the
convergence guarantees of AA for smooth fixed-point prob-
lems to the nonsmooth case, and demonstrated how this result
ensures (local) convergence rates for AA applied to PGD.

1https://archive.ics.uci.edu/ml/datasets/Madelon
2https://docs.scipy.org/doc/scipy/reference/

optimize.html
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